論文の概要: Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis
- arxiv url: http://arxiv.org/abs/2403.16212v1
- Date: Sun, 24 Mar 2024 16:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:56:25.779183
- Title: Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis
- Title(参考訳): アルツハイマー診断における高精度MRI分類のための深層学習とXception Architectureの活用
- Authors: Shaojie Li, Haichen Qu, Xinqi Dong, Bo Dang, Hengyi Zang, Yulu Gong,
- Abstract要約: 本研究の目的は、深層学習モデルを用いてMRI画像の分類を行い、アルツハイマー病の異なる段階を同定することである。
実験の結果,Xceptionモデルに基づくディープラーニングフレームワークは,マルチクラスMRI画像分類タスクにおいて99.6%の精度を達成した。
- 参考スコア(独自算出の注目度): 11.295734491885682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring the application of deep learning technologies in the field of medical diagnostics, Magnetic Resonance Imaging (MRI) provides a unique perspective for observing and diagnosing complex neurodegenerative diseases such as Alzheimer Disease (AD). With advancements in deep learning, particularly in Convolutional Neural Networks (CNNs) and the Xception network architecture, we are now able to analyze and classify vast amounts of MRI data with unprecedented accuracy. The progress of this technology not only enhances our understanding of brain structural changes but also opens up new avenues for monitoring disease progression through non-invasive means and potentially allows for precise diagnosis in the early stages of the disease. This study aims to classify MRI images using deep learning models to identify different stages of Alzheimer Disease through a series of innovative data processing and model construction steps. Our experimental results show that the deep learning framework based on the Xception model achieved a 99.6% accuracy rate in the multi-class MRI image classification task, demonstrating its potential application value in assistive diagnosis. Future research will focus on expanding the dataset, improving model interpretability, and clinical validation to further promote the application of deep learning technology in the medical field, with the hope of bringing earlier diagnosis and more personalized treatment plans to Alzheimer Disease patients.
- Abstract(参考訳): 医学診断分野におけるディープラーニング技術の応用を探求するMRI(Magnetic Resonance Imaging)は、アルツハイマー病(AD)のような複雑な神経変性疾患の観察と診断にユニークな視点を提供する。
ディープラーニング,特に畳み込みニューラルネットワーク(CNN)とXceptionネットワークアーキテクチャの進歩により,大量のMRIデータを前例のない精度で分析・分類することが可能になった。
この技術の進歩は、脳構造の変化に対する理解を深めるだけでなく、非侵襲的な方法で疾患の進行をモニタリングするための新たな道を開く。
本研究では、深層学習モデルを用いてMRI画像の分類を行い、一連の革新的なデータ処理とモデル構築手順を通じてアルツハイマー病の異なるステージを特定することを目的とする。
実験の結果,Xceptionモデルに基づくディープラーニングフレームワークは,多クラスMRI画像分類タスクにおいて99.6%の精度を達成し,支援診断における潜在的な適用価値を示した。
今後の研究は、より早期の診断とパーソナライズされた治療計画をアルツハイマー病患者にもたらすことを目的として、データセットの拡大、モデル解釈可能性の向上、医療分野におけるディープラーニング技術のさらなる適用を促進するための臨床検証に焦点を当てる。
関連論文リスト
- Addressing the Gaps in Early Dementia Detection: A Path Towards Enhanced Diagnostic Models through Machine Learning [0.0]
この急激な世界的な高齢化傾向は、アルツハイマー病を含む認知症患者の増加につながっている。
認知テスト、ニューロイメージング、バイオマーカー分析といった従来の診断技術は、感度、アクセシビリティ、コストに重大な制限に直面している。
本研究は、早期認知症検出を促進するための変革的アプローチとして、機械学習(ML)の可能性を探るものである。
論文 参考訳(メタデータ) (2024-09-05T00:52:59Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Alzheimers Disease Diagnosis by Deep Learning Using MRI-Based Approaches [0.0]
アルツハイマー病はいくつかの脳の過程(記憶など)を弱め、最終的に死に至る。
ディープラーニングアルゴリズムは、入力された生データからパターン認識と特徴抽出を行うことができる。
我々は,2021年から2023年にかけてのMRIに基づくディープラーニングアルゴリズムを用いて,アルツハイマー病の診断に焦点を当てた5つの特定の研究を分析した。
論文 参考訳(メタデータ) (2023-10-26T19:48:08Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
我々は、高度に異種な臨床データに基づいてディープラーニングモデルを訓練するための新しいディープラーニングアーキテクチャ、MUCRANを開発した。
われわれは、2019年以前にマサチューセッツ総合病院から収集した16,821個の臨床T1軸性脳MRIを用いてMUCRANを訓練した。
このモデルでは,新たに収集したデータに対して90%以上の精度で頑健な性能を示した。
論文 参考訳(メタデータ) (2022-05-05T18:39:09Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶障害や機能障害を引き起こす進行性脳疾患である。
本研究では,通常の認知,軽度認知障害,ADクラスを分類するために,マルチモーダル・ディープ・ラーニング・アプローチを用いる。
論文 参考訳(メタデータ) (2021-07-19T08:19:34Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
脳MRIにおける構造-機能変換を初めて学習することにより,潜在的な解決策を提案する。
次に,大規模構造スキャンから空間整合機能画像を合成する。
時間的ローブは最も予測可能な構造領域であり、パリエト後頭ローブはモデルで最も予測可能な機能領域である。
論文 参考訳(メタデータ) (2021-04-10T03:16:33Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。