論文の概要: Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach
- arxiv url: http://arxiv.org/abs/2408.16343v1
- Date: Thu, 29 Aug 2024 08:26:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:32:51.669615
- Title: Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach
- Title(参考訳): 統合型マルチモーダル学習によるアルツハイマー病のロバスト早期検出に向けて
- Authors: Yifei Chen, Shenghao Zhu, Zhaojie Fang, Chang Liu, Binfeng Zou, Yuhe Wang, Shuo Chang, Fan Jia, Feiwei Qin, Jin Fan, Yong Peng, Changmiao Wang,
- Abstract要約: アルツハイマー病(英: Alzheimer's Disease、AD)は、記憶障害、執行機能障害、性格変化を特徴とする複雑な神経変性疾患である。
本研究では,臨床,認知,神経画像,脳波データを統合した高度なマルチモーダル分類モデルを提案する。
- 参考スコア(独自算出の注目度): 5.9091823080038814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes. Early diagnosis is challenging due to subtle symptoms and varied presentations, often leading to misdiagnosis with traditional unimodal diagnostic methods due to their limited scope. This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data to enhance diagnostic accuracy. The model incorporates a feature tagger with a tabular data coding architecture and utilizes the TimesBlock module to capture intricate temporal patterns in Electroencephalograms (EEG) data. By employing Cross-modal Attention Aggregation module, the model effectively fuses Magnetic Resonance Imaging (MRI) spatial information with EEG temporal data, significantly improving the distinction between AD, Mild Cognitive Impairment, and Normal Cognition. Simultaneously, we have constructed the first AD classification dataset that includes three modalities: EEG, MRI, and tabular data. Our innovative approach aims to facilitate early diagnosis and intervention, potentially slowing the progression of AD. The source code and our private ADMC dataset are available at https://github.com/JustlfC03/MSTNet.
- Abstract(参考訳): アルツハイマー病(英: Alzheimer's Disease、AD)は、記憶障害、執行機能障害、性格変化を特徴とする複雑な神経変性疾患である。
早期診断は、微妙な症状や様々な提示が原因で困難であり、多くの場合、その範囲が限られているため、従来の一過性診断法と誤診される。
本研究では,臨床,認知,神経画像,脳波データを統合して診断精度を高める,高度なマルチモーダル分類モデルを提案する。
このモデルは、表形式のデータコーディングアーキテクチャを備えた機能タグを組み込み、TimesBlockモジュールを使用して、脳波(EEG)データ中の複雑な時間パターンをキャプチャする。
クロスモーダルアテンションアグリゲーションモジュールを用いることで、脳波時間データとMRI空間情報を効果的に融合させ、AD、軽度認知障害、正常認知の区別を大幅に改善する。
同時に、脳波、MRI、表データという3つのモードを含む最初のAD分類データセットを構築した。
我々の革新的なアプローチは早期診断と介入を促進することであり、ADの進行を遅らせる可能性がある。
ソースコードとプライベートADMCデータセットはhttps://github.com/JustlfC03/MSTNet.comで公開されています。
関連論文リスト
- Study of Brain Network in Alzheimers Disease Using Wavelet-Based Graph Theory Method [0.0]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶喪失と認知低下を特徴とする神経変性疾患である。
ピアソンの相関のような伝統的な手法は相関行列を計算するために使われてきた。
本稿では、離散ウェーブレット変換(DWT)とグラフ理論を統合し、脳ネットワークの動的挙動をモデル化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T07:26:14Z) - Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
アルツハイマー病 (AD) と前頭側頭型認知症 (FTD) は認知症の一般的な形態であり、それぞれ異なる進行パターンを持つ。
本研究は,脳深部領域の時系列信号を解析し,認知症に対する深い学習に基づく分類システムを開発することを目的とする。
論文 参考訳(メタデータ) (2024-08-20T13:11:43Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - 3D Transformer based on deformable patch location for differential
diagnosis between Alzheimer's disease and Frontotemporal dementia [0.0]
アルツハイマー病と前頭側頭葉認知症は重度の臨床症状を呈する神経変性疾患の一般的なタイプである。
変形可能なパッチ位置モジュールを用いた新規な3次元トランスフォーマーアーキテクチャーを提案し,アルツハイマー病と前頭側頭葉認知症の鑑別診断を改善した。
論文 参考訳(メタデータ) (2023-09-06T17:42:18Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶障害や機能障害を引き起こす進行性脳疾患である。
本研究では,通常の認知,軽度認知障害,ADクラスを分類するために,マルチモーダル・ディープ・ラーニング・アプローチを用いる。
論文 参考訳(メタデータ) (2021-07-19T08:19:34Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。