On Out-of-distribution Detection with Energy-based Models
- URL: http://arxiv.org/abs/2107.08785v1
- Date: Sat, 3 Jul 2021 22:09:02 GMT
- Title: On Out-of-distribution Detection with Energy-based Models
- Authors: Sven Elflein, Bertrand Charpentier, Daniel Z\"ugner, Stephan
G\"unnemann
- Abstract summary: Energy-based models (EBMs) are flexible, unnormalized density models which seem to be able to improve upon this failure mode.
We show that supervision and architectural restrictions improve the OOD detection of EBMs independent of the training approach.
- Score: 38.87164384576751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several density estimation methods have shown to fail to detect
out-of-distribution (OOD) samples by assigning higher likelihoods to anomalous
data. Energy-based models (EBMs) are flexible, unnormalized density models
which seem to be able to improve upon this failure mode. In this work, we
provide an extensive study investigating OOD detection with EBMs trained with
different approaches on tabular and image data and find that EBMs do not
provide consistent advantages. We hypothesize that EBMs do not learn semantic
features despite their discriminative structure similar to Normalizing Flows.
To verify this hypotheses, we show that supervision and architectural
restrictions improve the OOD detection of EBMs independent of the training
approach.
Related papers
- Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
We present a training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs.
Our method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks.
arXiv Detail & Related papers (2024-07-23T12:28:59Z) - Energy-Based Models for Anomaly Detection: A Manifold Diffusion Recovery
Approach [12.623417770432146]
We present a new method of training energy-based models (EBMs) for anomaly detection that leverages low-dimensional structures within data.
The proposed algorithm, Manifold Projection-Diffusion Recovery (MPDR), first perturbs a data point along a low-dimensional manifold that approximates the training dataset.
Experimental results show that MPDR exhibits strong performance across various anomaly detection tasks involving diverse data types.
arXiv Detail & Related papers (2023-10-28T11:18:39Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
Energy-based models (EBMs) are versatile density estimation models that directly parameterize an unnormalized log density.
We propose a new maximum likelihood training algorithm for EBMs that uses a different type of generative model, normalizing flows (NF)
Our method fits an NF to an EBM during training so that an NF-assisted sampling scheme provides an accurate gradient for the EBMs at all times.
arXiv Detail & Related papers (2023-06-01T13:58:06Z) - Plugin estimators for selective classification with out-of-distribution
detection [67.28226919253214]
Real-world classifiers can benefit from abstaining from predicting on samples where they have low confidence.
These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature.
Recent work on selective classification with OOD detection has argued for the unified study of these problems.
We propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches.
arXiv Detail & Related papers (2023-01-29T07:45:17Z) - Master's Thesis: Out-of-distribution Detection with Energy-based Models [0.0]
Deep learning is increasingly applied in security-critical situations such as autonomous driving and medical diagnosis.
Researchers recently found that neural networks are overly confident in their predictions, even on data they have never seen before.
In this thesis, we investigate the capabilities of EBMs at the task of fitting the training data distribution to perform detection of out-of-distribution (OOD) inputs.
arXiv Detail & Related papers (2023-01-28T15:40:30Z) - Understanding Failures in Out-of-Distribution Detection with Deep
Generative Models [22.11487118547924]
We prove that no method can guarantee performance beyond random chance without assumptions on which out-distributions are relevant.
We highlight the consequences implied by assuming support overlap between in- and out-distributions.
Our results suggest that estimation error is a more plausible explanation than the misalignment between likelihood-based OOD detection and out-distributions of interest.
arXiv Detail & Related papers (2021-07-14T18:00:11Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Density of States Estimation for Out-of-Distribution Detection [69.90130863160384]
DoSE is the density of states estimator.
We demonstrate DoSE's state-of-the-art performance against other unsupervised OOD detectors.
arXiv Detail & Related papers (2020-06-16T16:06:25Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data.
Existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples.
We propose Neural Architecture Distribution Search (NADS) to identify common building blocks among all uncertainty-aware architectures.
arXiv Detail & Related papers (2020-06-11T17:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.