Multi-objective Cat Swarm Optimization Algorithm based on a Grid System
- URL: http://arxiv.org/abs/2502.19439v1
- Date: Sat, 22 Feb 2025 09:13:21 GMT
- Title: Multi-objective Cat Swarm Optimization Algorithm based on a Grid System
- Authors: Aram M. Ahmed, Bryar A. Hassan, Tarik A. Rashid, Kaniaw A. Noori, Soran Ab. M. Saeed, Omed H. Ahmed, Shahla U. Umar,
- Abstract summary: This paper presents a multi-objective version of the Cat Swarm Optimization Algorithm called the Grid-based Multi-objective Cat Swarm Optimization Algorithm (GMOCSO)<n> Convergence and diversity preservation are the two main goals pursued by modern multi-objective algorithms to yield robust results.
- Score: 3.893824727358049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a multi-objective version of the Cat Swarm Optimization Algorithm called the Grid-based Multi-objective Cat Swarm Optimization Algorithm (GMOCSO). Convergence and diversity preservation are the two main goals pursued by modern multi-objective algorithms to yield robust results. To achieve these goals, we first replace the roulette wheel method of the original CSO algorithm with a greedy method. Then, two key concepts from Pareto Archived Evolution Strategy Algorithm (PAES) are adopted: the grid system and double archive strategy. Several test functions and a real-world scenario called the Pressure vessel design problem are used to evaluate the proposed algorithm's performance. In the experiment, the proposed algorithm is compared with other well-known algorithms using different metrics such as Reversed Generational Distance, Spacing metric, and Spread metric. The optimization results show the robustness of the proposed algorithm, and the results are further confirmed using statistical methods and graphs. Finally, conclusions and future directions were presented..
Related papers
- A Novel Pareto-optimal Ranking Method for Comparing Multi-objective Optimization Algorithms [2.889178722750616]
This paper proposes a novel multi-metric comparison method to rank the performance of multi-/many-objective optimization algorithms.<n>Four different techniques are proposed to rank algorithms based on their contribution at each Pareto level.<n>The techniques have broad applications in science and engineering, particularly in areas where multiple metrics are used for comparisons.
arXiv Detail & Related papers (2024-11-27T02:34:54Z) - A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
We provide a novel ranking scheme to rank the algorithms over multiple single-objective optimization problems.
The results of the algorithms are compared using a robust bootstrapping-based hypothesis testing procedure.
arXiv Detail & Related papers (2024-05-31T19:35:34Z) - Combining Kernelized Autoencoding and Centroid Prediction for Dynamic
Multi-objective Optimization [3.431120541553662]
This paper proposes a unified paradigm, which combines the kernelized autoncoding evolutionary search and the centriod-based prediction.
The proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems.
arXiv Detail & Related papers (2023-12-02T00:24:22Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
This paper presents a powerful swarm intelligence meta-heuristic optimization algorithm called Dynamic Cat Swarm Optimization.
The proposed algorithm suggests a new method to provide a proper balance between these phases by modifying the selection scheme and the seeking mode of the algorithm.
optimization results show the effectiveness of the proposed algorithm, which ranks first compared to several well-known algorithms available in the literature.
arXiv Detail & Related papers (2021-04-27T19:41:27Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.