T-RECS: A Simulation Tool to Study the Societal Impact of Recommender
Systems
- URL: http://arxiv.org/abs/2107.08959v1
- Date: Mon, 19 Jul 2021 15:16:44 GMT
- Title: T-RECS: A Simulation Tool to Study the Societal Impact of Recommender
Systems
- Authors: Eli Lucherini, Matthew Sun, Amy Winecoff, Arvind Narayanan
- Abstract summary: We introduce T-RECS, an open-sourced Python package designed for researchers to simulate recommendation systems.
To demonstrate the flexibility of T-RECS, we perform a replication of two prior simulation-based research on sociotechnical systems.
- Score: 5.592114738742928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation has emerged as a popular method to study the long-term societal
consequences of recommender systems. This approach allows researchers to
specify their theoretical model explicitly and observe the evolution of
system-level outcomes over time. However, performing simulation-based studies
often requires researchers to build their own simulation environments from the
ground up, which creates a high barrier to entry, introduces room for
implementation error, and makes it difficult to disentangle whether observed
outcomes are due to the model or the implementation.
We introduce T-RECS, an open-sourced Python package designed for researchers
to simulate recommendation systems and other types of sociotechnical systems in
which an algorithm mediates the interactions between multiple stakeholders,
such as users and content creators. To demonstrate the flexibility of T-RECS,
we perform a replication of two prior simulation-based research on
sociotechnical systems. We additionally show how T-RECS can be used to generate
novel insights with minimal overhead. Our tool promotes reproducibility in this
area of research, provides a unified language for simulating sociotechnical
systems, and removes the friction of implementing simulations from scratch.
Related papers
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
This paper introduces Embed and Emulate (E&E), a new simulation-based inference ( SBI) method based on contrastive learning.
E&E learns a low-dimensional latent embedding of the data and a corresponding fast emulator in the latent space.
We demonstrate superior performance over existing methods in a realistic, non-identifiable parameter estimation task.
arXiv Detail & Related papers (2024-09-27T02:37:01Z) - Feasibility Study on Active Learning of Smart Surrogates for Scientific Simulations [4.368891765870579]
We investigate the potential of incorporating active learning into deep neural networks (DNNs) surrogate training.
This allows intelligent and objective selection of training simulations, reducing the need to generate extensive simulation data.
The results set the groundwork for developing the high-performance computing infrastructure for Smart Surrogates.
arXiv Detail & Related papers (2024-07-10T14:00:20Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models.
This paper investigates the robustness of existing CLTR models in complex and diverse situations.
We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation.
arXiv Detail & Related papers (2024-04-04T10:54:38Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
We present a machine learning-based data generator framework tailored to aid researchers who utilize simulations to examine various physical systems or processes.
Our approach involves a two-step process: first, we train a supervised predictive model using a limited simulated dataset to predict simulation outcomes.
Subsequently, a reinforcement learning agent is trained to generate accurate, simulation-like data by leveraging the supervised model.
arXiv Detail & Related papers (2023-05-16T17:31:50Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
Deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models.
This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally meandering channels in underground volumes.
arXiv Detail & Related papers (2023-05-12T14:21:14Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation.
We start with the motivation behind the development of frameworks implementing the simulations -- simulators.
We provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness.
arXiv Detail & Related papers (2022-06-22T19:33:21Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.