Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study
- URL: http://arxiv.org/abs/2404.03707v1
- Date: Thu, 4 Apr 2024 10:54:38 GMT
- Title: Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study
- Authors: Zechun Niu, Jiaxin Mao, Qingyao Ai, Ji-Rong Wen,
- Abstract summary: Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models.
This paper investigates the robustness of existing CLTR models in complex and diverse situations.
We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation.
- Score: 61.64685376882383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models. While the CLTR models can be theoretically unbiased when the user behavior assumption is correct and the propensity estimation is accurate, their effectiveness is usually empirically evaluated via simulation-based experiments due to a lack of widely-available, large-scale, real click logs. However, the mainstream simulation-based experiments are somewhat limited as they often feature a single, deterministic production ranker and simplified user simulation models to generate the synthetic click logs. As a result, the robustness of CLTR models in complex and diverse situations is largely unknown and needs further investigation. To address this problem, in this paper, we aim to investigate the robustness of existing CLTR models in a reproducibility study with extensive simulation-based experiments that (1) use both deterministic and stochastic production rankers, each with different ranking performance, and (2) leverage multiple user simulation models with different user behavior assumptions. We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation. Besides, the existing CLTR models often fail to outperform the naive click baselines when the production ranker has relatively high ranking performance or certain randomness, which suggests an urgent need for developing new CLTR algorithms that work for these settings.
Related papers
- Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - Learning to Simulate: Generative Metamodeling via Quantile Regression [2.2518304637809714]
We propose a new metamodeling concept, called generative metamodeling, which aims to construct a "fast simulator of the simulator"
Once constructed, a generative metamodel can generate a large amount of random outputs as soon as the inputs are specified.
We propose a new algorithm -- quantile-regression-based generative metamodeling (QRGMM) -- and study its convergence and rate of convergence.
arXiv Detail & Related papers (2023-11-29T16:46:24Z) - Learning Residual Model of Model Predictive Control via Random Forests
for Autonomous Driving [13.865293598486492]
One major issue in predictive control (MPC) for autonomous driving is the contradiction between the system model's prediction and computation.
This paper reformulates the MPC tracking accuracy as a program (QP) problem optimization as a program (QP) can effectively solve it.
arXiv Detail & Related papers (2023-04-10T03:32:09Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Deep Learning Models for Knowledge Tracing: Review and Empirical
Evaluation [2.423547527175807]
We review and evaluate a body of deep learning knowledge tracing (DLKT) models with openly available and widely-used data sets.
The evaluated DLKT models have been reimplemented for assessing and replicability of previously reported results.
arXiv Detail & Related papers (2021-12-30T14:19:27Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
We contribute to micro-data model-based reinforcement learning (MBRL) by rigorously comparing popular generative models.
We find that on an environment that requires multimodal posterior predictives, mixture density nets outperform all other models by a large margin.
We also found that deterministic models are on par, in fact they consistently (although non-significantly) outperform their probabilistic counterparts.
arXiv Detail & Related papers (2021-07-24T11:38:25Z) - Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition [55.362258027878966]
We present momentum pseudo-labeling (MPL) as a simple yet effective strategy for semi-supervised speech recognition.
MPL consists of a pair of online and offline models that interact and learn from each other, inspired by the mean teacher method.
The experimental results demonstrate that MPL effectively improves over the base model and is scalable to different semi-supervised scenarios.
arXiv Detail & Related papers (2021-06-16T16:24:55Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.