Losses resistant verification of quantum non-Gaussian photon statistics
- URL: http://arxiv.org/abs/2408.11590v1
- Date: Wed, 21 Aug 2024 12:54:46 GMT
- Title: Losses resistant verification of quantum non-Gaussian photon statistics
- Authors: Riccardo Checchinato, Jan-Heinrich Littmann, Lukáš Lachman, Jaewon Lee, Sven Höfling, Christian Schneider, Radim Filip, Ana Predojević,
- Abstract summary: Quantum non-Gaussian states of light have fundamental properties that are essential for a multitude of applications in quantum technology.
Many features are difficult to detect using standard criteria due to optical losses and detector inefficiency.
We employ a loss-mitigated verification technique utilising quantum non-Gaussian witnesses, which incorporate the known optical losses and detector inefficiency into their derivation.
- Score: 5.292867550832236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum non-Gaussian states of light have fundamental properties that are essential for a multitude of applications in quantum technology. However, many of these features are difficult to detect using standard criteria due to optical losses and detector inefficiency. As the statistics of light are unknown, the loss correction on the data is unreliable, despite the fact that the losses can be precisely measured. To address this issue, we employ a loss-mitigated verification technique utilising quantum non-Gaussian witnesses, which incorporate the known optical losses and detector inefficiency into their derivation. This approach allows us to address the considerable challenge of experimentally demonstrating unheralded quantum non-Gaussian states of single photons and photon pairs.
Related papers
- Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum non-Gaussianity of light and atoms [0.0]
Quantum non-Gaussian states of photons and phonons are conclusive witnesses of higher-than-quadratic nonlinearities in optical and mechanical processes.
This review introduces theoretical analyses of nonclassical and quantum non-Gaussian states of photons and phonons.
arXiv Detail & Related papers (2022-06-05T19:48:41Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Direct detection of quantum non-Gaussian light from a dispersively
coupled single atom [0.0]
Many applications in quantum communication, sensing and computation need provably quantum non-Gaussian light.
Recently such light, witnessed by a negative Wigner function, has been estimated using homodyne tomography from a single atom dispersively coupled to a high-finesse cavity.
This opens an investigation of quantum non-Gaussian light for many experiments with atoms and solid-state emitters.
arXiv Detail & Related papers (2021-08-04T13:06:20Z) - Optimal strategy to certify quantum nonlocality [0.0]
certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography.
We introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit.
We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.
arXiv Detail & Related papers (2021-07-19T19:32:32Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.