Improving exploration in policy gradient search: Application to symbolic
optimization
- URL: http://arxiv.org/abs/2107.09158v1
- Date: Mon, 19 Jul 2021 21:11:07 GMT
- Title: Improving exploration in policy gradient search: Application to symbolic
optimization
- Authors: Mikel Landajuela Larma, Brenden K. Petersen, Soo K. Kim, Claudio P.
Santiago, Ruben Glatt, T. Nathan Mundhenk, Jacob F. Pettit, Daniel M. Faissol
- Abstract summary: Many machine learning strategies leverage neural networks to search large spaces of mathematical symbols.
In contrast to traditional evolutionary approaches, using a neural network at the core of the search allows learning higher-level symbolic patterns.
We show that these techniques can improve the performance, increase sample efficiency, and lower the complexity of solutions for the task of symbolic regression.
- Score: 6.344988093245026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning strategies designed to automate mathematical tasks
leverage neural networks to search large combinatorial spaces of mathematical
symbols. In contrast to traditional evolutionary approaches, using a neural
network at the core of the search allows learning higher-level symbolic
patterns, providing an informed direction to guide the search. When no labeled
data is available, such networks can still be trained using reinforcement
learning. However, we demonstrate that this approach can suffer from an early
commitment phenomenon and from initialization bias, both of which limit
exploration. We present two exploration methods to tackle these issues,
building upon ideas of entropy regularization and distribution initialization.
We show that these techniques can improve the performance, increase sample
efficiency, and lower the complexity of solutions for the task of symbolic
regression.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
We aim to integrate the structured and rule-based reasoning of algorithms with adaptive learning capabilities of neural networks.
This dissertation provides theoretical and practical contributions to this area of research.
arXiv Detail & Related papers (2024-02-21T12:16:51Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
We propose utilizing the framework of processes, which has been underutilized thus far.
We focus solely on activation frequency, leveraging neuroscience techniques used for real neuron spike trains.
We derive parameters describing activation patterns in each network, revealing consistent differences across architectures and training sets.
arXiv Detail & Related papers (2023-08-01T22:12:30Z) - Fortuitous Forgetting in Connectionist Networks [20.206607130719696]
We introduce "forget-and-relearn" as a powerful paradigm for shaping the learning trajectories of artificial neural networks.
The forget-and-relearn framework unifies many existing iterative training algorithms in the image classification and language emergence literature.
We leverage this understanding to improve upon existing algorithms by designing more targeted forgetting operations.
arXiv Detail & Related papers (2022-02-01T00:15:58Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
We propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems.
The proposed learning rule supports multiple spikes fired by hidden neurons, and yet is stable by relying on firstspike responses generated by a deterministic output layer.
We also explore several distinct spike-based encoding strategies in order to form compact representations of input data.
arXiv Detail & Related papers (2020-08-16T15:34:48Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - Learning the Travelling Salesperson Problem Requires Rethinking
Generalization [9.176056742068813]
End-to-end training of neural network solvers for graph optimization problems such as the Travelling Salesperson Problem (TSP) have seen a surge of interest recently.
While state-of-the-art learning-driven approaches perform closely to classical solvers when trained on trivially small sizes, they are unable to generalize the learnt policy to larger instances at practical scales.
This work presents an end-to-end neural optimization pipeline that unifies several recent papers in order to identify the principled biases, model architectures and learning algorithms that promote generalization to instances larger than those seen in training.
arXiv Detail & Related papers (2020-06-12T10:14:15Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.