論文の概要: Approximation Theory of Convolutional Architectures for Time Series
Modelling
- arxiv url: http://arxiv.org/abs/2107.09355v1
- Date: Tue, 20 Jul 2021 09:19:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-21 15:07:28.119553
- Title: Approximation Theory of Convolutional Architectures for Time Series
Modelling
- Title(参考訳): 時系列モデリングのための畳み込みアーキテクチャの近似理論
- Authors: Haotian Jiang, Zhong Li, Qianxiao Li
- Abstract要約: 時系列モデリングに適用した畳み込みアーキテクチャの近似特性について検討する。
近年の結果,データ生成プロセスにおける近似効率とメモリ構造との複雑な関係が明らかになった。
- 参考スコア(独自算出の注目度): 15.42770933459534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the approximation properties of convolutional architectures applied
to time series modelling, which can be formulated mathematically as a
functional approximation problem. In the recurrent setting, recent results
reveal an intricate connection between approximation efficiency and memory
structures in the data generation process. In this paper, we derive parallel
results for convolutional architectures, with WaveNet being a prime example.
Our results reveal that in this new setting, approximation efficiency is not
only characterised by memory, but also additional fine structures in the target
relationship. This leads to a novel definition of spectrum-based regularity
that measures the complexity of temporal relationships under the convolutional
approximation scheme. These analyses provide a foundation to understand the
differences between architectural choices for time series modelling and can
give theoretically grounded guidance for practical applications.
- Abstract(参考訳): 関数近似問題として数学的に定式化できる時系列モデリングに適用できる畳み込みアーキテクチャの近似特性について検討する。
近年の結果,データ生成プロセスにおける近似効率とメモリ構造との複雑な関係が明らかになった。
本稿では、WaveNetを主な例として、畳み込み型アーキテクチャの並列処理結果を導出する。
この新たな設定では、近似効率はメモリによって特徴づけられるだけでなく、ターゲット関係の微細構造も追加される。
これにより、畳み込み近似スキームの下で時間関係の複雑さを測定するスペクトルベースの正則性の新しい定義が導かれる。
これらの分析は、時系列モデリングにおけるアーキテクチャ選択の違いを理解する基盤を提供し、実用的な応用に関する理論的根拠を与える。
関連論文リスト
- Random Sparse Lifts: Construction, Analysis and Convergence of finite sparse networks [17.487761710665968]
本稿では,パラメータの数が増えると,勾配流による学習が任意に低損失に達するような,ニューラルネットワークの大規模クラスを定義する枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-10T12:52:00Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Tractable Bounding of Counterfactual Queries by Knowledge Compilation [51.47174989680976]
本稿では, パール構造因果モデルにおいて, 因果関係などの部分的特定可能なクエリのバウンダリングの問題について議論する。
最近提案された反復EMスキームは初期化パラメータをサンプリングしてそれらの境界を内部近似する。
シンボルパラメータを実際の値に置き換えた回路構造を,単一のシンボル知識コンパイルによって得られることを示す。
論文 参考訳(メタデータ) (2023-10-05T07:10:40Z) - Forward and Inverse Approximation Theory for Linear Temporal
Convolutional Networks [20.9427668489352]
我々は近似率推定(ジャクソン型結果)と逆近似定理(ベルンシュタイン型結果)を証明する。
我々は、時間的畳み込みアーキテクチャによって効率的に捕捉できるシーケンシャルな関係のタイプを包括的に評価する。
論文 参考訳(メタデータ) (2023-05-29T11:08:04Z) - Factorized Fusion Shrinkage for Dynamic Relational Data [16.531262817315696]
本稿では,すべての分解因子がグループ単位の核融合構造に対して動的に縮小される因子化核融合収縮モデルについて考察する。
提案手法は、推定された動的潜在因子の比較とクラスタリングにおいて、多くの好ましい特性を享受する。
本稿では、最適後部推論と計算スケーラビリティのバランスをとる構造的平均場変動推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-30T21:03:40Z) - Manifold Alignment-Based Multi-Fidelity Reduced-Order Modeling Applied
to Structural Analysis [0.8808021343665321]
本研究は,最近開発されたパラメトリック,非貫入性,多次元縮小次モデリング法の高次元変位場および応力場への適用について述べる。
その結果、不整合格子を用いた構造シミュレーションから得られる出力、あるいは関連する異なる位相は、容易に単一の予測モデルに組み合わされることが示されている。
新しいマルチフィデリティ縮小次数モデルでは,単一フィデリティモデルと比較して計算コストが低い場合に,比較的高い予測精度が得られる。
論文 参考訳(メタデータ) (2022-06-14T15:28:21Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。