論文の概要: Toward Collaborative Reinforcement Learning Agents that Communicate
Through Text-Based Natural Language
- arxiv url: http://arxiv.org/abs/2107.09356v1
- Date: Tue, 20 Jul 2021 09:19:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-21 15:10:03.395911
- Title: Toward Collaborative Reinforcement Learning Agents that Communicate
Through Text-Based Natural Language
- Title(参考訳): テキストベース自然言語を通してコミュニケーションする協調強化学習エージェントを目指して
- Authors: Kevin Eloff, Herman Engelbrecht
- Abstract要約: 本稿では,テキストベースの自然言語を,強化学習で訓練されたエージェント間のコミュニケーションの新たな形態とみなす。
Blind Leadsのゲームに触発されて、あるエージェントが自然言語を使って迷路を案内する環境を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication between agents in collaborative multi-agent settings is in
general implicit or a direct data stream. This paper considers text-based
natural language as a novel form of communication between multiple agents
trained with reinforcement learning. This could be considered first steps
toward a truly autonomous communication without the need to define a limited
set of instructions, and natural collaboration between humans and robots.
Inspired by the game of Blind Leads, we propose an environment where one agent
uses natural language instructions to guide another through a maze. We test the
ability of reinforcement learning agents to effectively communicate through
discrete word-level symbols and show that the agents are able to sufficiently
communicate through natural language with a limited vocabulary. Although the
communication is not always perfect English, the agents are still able to
navigate the maze. We achieve a BLEU score of 0.85, which is an improvement of
0.61 over randomly generated sequences while maintaining a 100% maze completion
rate. This is a 3.5 times the performance of the random baseline using our
reference set.
- Abstract(参考訳): 協調的なマルチエージェント設定におけるエージェント間の通信は一般的に暗黙的あるいは直接データストリームである。
本稿では,テキストベースの自然言語を,強化学習で訓練された複数のエージェント間のコミュニケーションの新たな形態とみなす。
これは、限られた命令セットや人間とロボットの自然な協調を定義することなく、真に自律的なコミュニケーションへの第一歩と考えることができる。
ブラインドリードのゲームに触発されて,あるエージェントが自然言語命令を使って,別のエージェントを迷路で案内する環境を提案する。
強化学習エージェントが個別の単語レベルのシンボルを通して効果的にコミュニケーションできることをテストし、限られた語彙で自然言語を介して十分にコミュニケーションできることを示す。
コミュニケーションは常に完璧であるとは限らないが、エージェントは迷路をナビゲートすることができる。
BLEUスコアは0.85で、100%迷路完了率を維持しつつランダムに生成されたシーケンスよりも0.61向上している。
これは、基準セットを用いたランダムベースラインのパフォーマンスの3.5倍です。
関連論文リスト
- Progressively Efficient Learning [58.6490456517954]
我々はCEIL(Communication-Efficient Interactive Learning)という新しい学習フレームワークを開発した。
CEILは、学習者と教師がより抽象的な意図を交換することで効率的にコミュニケーションする人間のようなパターンの出現につながる。
CEILで訓練されたエージェントは、新しいタスクを素早く習得し、非階層的で階層的な模倣学習を、絶対的な成功率で最大50%、20%上回った。
論文 参考訳(メタデータ) (2023-10-13T07:52:04Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Transforming Human-Centered AI Collaboration: Redefining Embodied Agents
Capabilities through Interactive Grounded Language Instructions [23.318236094953072]
人間の知能の適応性は目覚ましいもので、新しいタスクやマルチモーダル環境に迅速に適応することができる。
研究コミュニティはインタラクティブな「身体的エージェント」の開発を積極的に進めている
これらのエージェントは、コミュニケーションが壊れたり、指示が不明確であったりした場合に、迅速にフィードバックをリクエストする能力を持っていなければならない。
論文 参考訳(メタデータ) (2023-05-18T07:51:33Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z) - Linking Emergent and Natural Languages via Corpus Transfer [98.98724497178247]
創発言語と自然言語のコーパス転送によるリンクを確立する新しい方法を提案する。
このアプローチでは,言語モデリングとイメージキャプションという,2つの異なるタスクに対して,非自明な転送メリットを示す。
また,同一画像に基づく自然言語キャプションに創発的メッセージを翻訳することで,創発的言語の伝達可能性を予測する新しい指標を提案する。
論文 参考訳(メタデータ) (2022-03-24T21:24:54Z) - Dynamic population-based meta-learning for multi-agent communication
with natural language [44.87604064505434]
我々は、自然言語を含むマルチエージェント通信環境において、目に見えない、見えない、人間のパートナーと協調できるエージェントを訓練する。
本稿では,このような集団を反復的に構築する,動的な人口ベースメタラーニング手法を提案する。
私たちのエージェントは、見たパートナーや人間とのコミュニケーションにおいて、すべての先行作業より優れています。
論文 参考訳(メタデータ) (2021-10-27T07:50:02Z) - Emergent Discrete Communication in Semantic Spaces [3.2280079436668996]
本稿では,学習された連続空間から導出される離散トークンを介してエージェントが通信できるようにするニューラルエージェントアーキテクチャを提案する。
決定論の枠組みでは、我々の手法は幅広いシナリオでコミュニケーションを最適化するが、一方1ホットトークンは制約的な仮定の下では最適である。
セルフプレイ実験では、訓練されたエージェントが意味論的に意味のある方法でトークンをクラスタリングすることを学び、ノイズの多い環境でコミュニケーションできることを検証する。
論文 参考訳(メタデータ) (2021-08-04T03:32:48Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Self-play for Data Efficient Language Acquisition [20.86261546611472]
学習エージェントにおける言語習得の効率と品質を向上させるために,コミュニケーションの対称性を利用する。
直接監督の代わりにセルフプレイを使用することで、エージェントが役割間で知識を伝達できることが示される。
論文 参考訳(メタデータ) (2020-10-10T02:09:19Z) - On the interaction between supervision and self-play in emergent
communication [82.290338507106]
本研究は,2つのカテゴリの学習信号と,サンプル効率の向上を目標とする学習信号の関係について検討する。
人間のデータに基づく教師付き学習による初等訓練エージェントが,自己演奏が会話に優れていることが判明した。
論文 参考訳(メタデータ) (2020-02-04T02:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。