Anomalous statistics of laser-cooled atoms in dissipative optical
lattices
- URL: http://arxiv.org/abs/2107.09526v3
- Date: Wed, 25 Jan 2023 19:21:13 GMT
- Title: Anomalous statistics of laser-cooled atoms in dissipative optical
lattices
- Authors: Gadi Afek, Nir Davidson, David A. Kessler and Eli Barkai
- Abstract summary: A century ago it was realized that an extension to this type of dynamics can be obtained in the form of anomalous" diffusion.
Laser-cooled atomic ensembles can be used as a test bed for such dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion occurs in numerous physical systems throughout nature, drawing its
generality from the universality of the central limit theorem. Around a century
ago it was realized that an extension to this type of dynamics can be obtained
in the form of ``anomalous" diffusion where distributions are allowed to have
heavy, power-law tails. Due to a unique feature of its momentum-dependant
dissipative friction force, laser-cooled atomic ensembles can be used as a test
bed for such dynamics. The interplay between laser cooling and anomalous
dynamics bears deep, predictive implications for fundamental concepts in both
equilibrium and non-equilibrium statistical physics. The high degree of control
available in cold-atom experiments allows for tuning of the parameters of the
friction force, revealing transitions in the dynamical properties of the
system. Rare events, in both the momentum and spatial distributions, are
described by non-normalized states using tools adapted from infinite ergodic
theory. This leads to new experimental and theoretical results, illuminating
the various features of the system.
Related papers
- Emergent Universal Quench Dynamics in Randomly Interacting Spin Models [20.38924078291244]
We report the experimental observation of universal dynamics by monitoring the spin depolarization process in a solid-state NMR system.
We discover a remarkable phenomenon that these correlation functions obey a universal functional form.
Our observation demonstrates the existence of universality even in non-equilibrium dynamics at high temperatures.
arXiv Detail & Related papers (2024-06-11T18:00:10Z) - Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Impact of Dissipation on Universal Fluctuation Dynamics in Open Quantum
Systems [0.0]
dissipation drastically alters universal particle-number-fluctuation dynamics related to surface-roughness growth in non-interacting fermions and bosons.
In a system under dephasing that causes loss of spatial coherence, we find that a universality class of surface-roughness dynamics changes from the ballistic class to a class with the Edwards-Wilkinson scaling exponents.
arXiv Detail & Related papers (2022-02-04T15:10:01Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.