論文の概要: Regularized Classification-Aware Quantization
- arxiv url: http://arxiv.org/abs/2107.09716v1
- Date: Mon, 12 Jul 2021 21:27:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-25 11:58:30.242851
- Title: Regularized Classification-Aware Quantization
- Title(参考訳): 正規化分類アウェア量子化
- Authors: Daniel Severo, Elad Domanovitz, Ashish Khisti
- Abstract要約: 本稿では,バイナリ分類タスクの分散量子化スキームを学習するアルゴリズムのクラスを提案する。
本手法は正規化分類認識量子化と呼ばれる。
- 参考スコア(独自算出の注目度): 39.04839665081476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditionally, quantization is designed to minimize the reconstruction error
of a data source. When considering downstream classification tasks, other
measures of distortion can be of interest; such as the 0-1 classification loss.
Furthermore, it is desirable that the performance of these quantizers not
deteriorate once they are deployed into production, as relearning the scheme
online is not always possible. In this work, we present a class of algorithms
that learn distributed quantization schemes for binary classification tasks.
Our method performs well on unseen data, and is faster than previous methods
proportional to a quadratic term of the dataset size. It works by regularizing
the 0-1 loss with the reconstruction error. We present experiments on synthetic
mixture and bivariate Gaussian data and compare training, testing, and
generalization errors with a family of benchmark quantization schemes from the
literature. Our method is called Regularized Classification-Aware Quantization.
- Abstract(参考訳): 伝統的に、量子化はデータソースの再構成エラーを最小限に抑えるように設計されている。
下流の分類タスクを考慮すると、他の歪みの尺度、例えば0-1の分類損失が興味をそそる。
さらに,これらの量化器の性能は,オンラインでの学習が必ずしも不可能であるため,生産に投入しても劣化しないことが望ましい。
本研究では,バイナリ分類タスクの分散量子化スキームを学習するアルゴリズムのクラスを提案する。
提案手法は未知のデータに対して良好に動作し,データセットサイズの2次項に比例する従来の手法よりも高速である。
復元誤差で0-1損失を正則化することで機能する。
本稿では, 合成混合および二変量ガウスデータの実験を行い, トレーニング, テスト, 一般化誤差を文献からのベンチマーク量子化スキーム群と比較する。
本手法は正規化分類認識量子化と呼ばれる。
関連論文リスト
- Online Nonparametric Supervised Learning for Massive Data [0.0]
本研究では,非パラメトリック分類器を大規模にリアルタイムに計算する高速アルゴリズムと,ストリーミングデータフレームワークを開発した。
提案手法は、リアルタイムな胎児の健康モニタリングによく使用される機械学習アルゴリズムと比較して評価・比較する。
論文 参考訳(メタデータ) (2024-05-29T20:04:23Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
コンピュータビジョンにおける回帰タスクは、しばしば、対象空間をクラスに定量化することで分類される。
トレーニングサンプルの大多数は目標値の先頭にあるが、少数のサンプルは通常より広い尾幅に分布する。
不均衡回帰タスクを解くために階層型分類器を構築することを提案する。
不均衡回帰のための新しい階層型分類調整(HCA)は,3つのタスクにおいて優れた結果を示す。
論文 参考訳(メタデータ) (2023-10-26T04:54:39Z) - Misclassification in Automated Content Analysis Causes Bias in
Regression. Can We Fix It? Yes We Can! [0.30693357740321775]
我々は,コミュニケーション学者が誤分類バイアスをほとんど無視していることを,体系的な文献レビューで示している。
既存の統計手法では、人間のアノテータによって作成されたような「金の標準」検証データを使って誤分類バイアスを補正することができる。
我々は、Rパッケージの誤分類モデルの設計と実装を含む、そのような手法を導入し、テストする。
論文 参考訳(メタデータ) (2023-07-12T23:03:55Z) - Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift [3.303002683812084]
本稿では,情報正規化とアドホックなトレーニング手法に基づくスケーラブルで容易に適応可能なアプローチを提案し,シフト問題を緩和する。
提案手法は,特徴量からの知識をニューラルネットワークに組み込むことで,基礎となるデータシフト問題を管理する。
論文 参考訳(メタデータ) (2023-03-12T02:49:19Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Shift Happens: Adjusting Classifiers [2.8682942808330703]
ブレアスコアやログロス(クロスエントロピー)のような適切なスコアリングルールによって測定される期待損失を最小限に抑えることは、確率的分類器を訓練する際の共通の目的である。
本稿では,全ての予測を平均予測とクラス分布に等化させる手法を提案する。
実際に、クラス分布が概ね知られている場合、シフトの量やクラス分布が知られている精度に応じて、損失が減少することがしばしばあることを実験によって実証した。
論文 参考訳(メタデータ) (2021-11-03T21:27:27Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
特に,情報理論の原理を用いて,反復型SSLアルゴリズムのエミュレータ一般化誤差の振る舞いを理解することを目的とする。
我々の理論的結果は、クラス条件分散があまり大きくない場合、一般化誤差の上限は反復数とともに単調に減少するが、すぐに飽和することを示している。
論文 参考訳(メタデータ) (2021-10-03T05:38:49Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Better Multi-class Probability Estimates for Small Data Sets [0.0]
我々は,データ生成とグループ化のアルゴリズムが多クラス問題の解決に有効であることを示す。
実験により,提案手法を用いてキャリブレーション誤差を低減し,計算コストの増大を許容できることを示した。
論文 参考訳(メタデータ) (2020-01-30T10:21:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。