論文の概要: Online Nonparametric Supervised Learning for Massive Data
- arxiv url: http://arxiv.org/abs/2405.19486v1
- Date: Wed, 29 May 2024 20:04:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:16:17.494969
- Title: Online Nonparametric Supervised Learning for Massive Data
- Title(参考訳): 大規模データのためのオンライン非パラメトリック教師付き学習
- Authors: Mohamed Chaouch, Omama M. Al-Hamed,
- Abstract要約: 本研究では,非パラメトリック分類器を大規模にリアルタイムに計算する高速アルゴリズムと,ストリーミングデータフレームワークを開発した。
提案手法は、リアルタイムな胎児の健康モニタリングによく使用される機械学習アルゴリズムと比較して評価・比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite their benefits in terms of simplicity, low computational cost and data requirement, parametric machine learning algorithms, such as linear discriminant analysis, quadratic discriminant analysis or logistic regression, suffer from serious drawbacks including linearity, poor fit of features to the usually imposed normal distribution and high dimensionality. Batch kernel-based nonparametric classifier, which overcomes the linearity and normality of features constraints, represent an interesting alternative for supervised classification problem. However, it suffers from the ``curse of dimension". The problem can be alleviated by the explosive sample size in the era of big data, while large-scale data size presents some challenges in the storage of data and the calculation of the classifier. These challenges make the classical batch nonparametric classifier no longer applicable. This motivates us to develop a fast algorithm adapted to the real-time calculation of the nonparametric classifier in massive as well as streaming data frameworks. This online classifier includes two steps. First, we consider an online principle components analysis to reduce the dimension of the features with a very low computation cost. Then, a stochastic approximation algorithm is deployed to obtain a real-time calculation of the nonparametric classifier. The proposed methods are evaluated and compared to some commonly used machine learning algorithms for real-time fetal well-being monitoring. The study revealed that, in terms of accuracy, the offline (or Batch), as well as, the online classifiers are good competitors to the random forest algorithm. Moreover, we show that the online classifier gives the best trade-off accuracy/computation cost compared to the offline classifier.
- Abstract(参考訳): 単純さ、計算コストの低さ、データ要求の面での利点にもかかわらず、線形判別分析、二次判別分析、ロジスティック回帰のようなパラメトリック機械学習アルゴリズムは、線形性、通常課される正規分布と高次元性に対する特徴の整合性、といった深刻な欠点に悩まされている。
特徴制約の線形性と正規性を克服するバッチカーネルベースの非パラメトリック分類器は、教師付き分類問題の興味深い代替手段である。
しかし、それは『次元の計算』に苦しめられている。
この問題は、ビッグデータ時代の爆発的なサンプルサイズによって緩和できるが、大規模データサイズはデータの保存と分類器の計算にいくつかの課題をもたらす。
これらの課題により、古典的な非パラメトリック分類器はもはや適用されない。
これにより,非パラメトリック分類器の大規模化とストリーミングデータフレームワークのリアルタイム計算に適応した高速なアルゴリズムを開発することができる。
このオンライン分類器は2つのステップを含む。
まず、計算コストを非常に低く抑えるために、オンラインの原理成分分析について検討する。
そして、確率近似アルゴリズムを適用し、非パラメトリック分類器のリアルタイム計算を得る。
提案手法は、リアルタイムな胎児の健康モニタリングによく使用される機械学習アルゴリズムと比較して評価・比較する。
研究によると、オフライン(またはバッチ)だけでなく、オンライン分類器もランダムな森林アルゴリズムと競合する。
さらに、オンライン分類器はオフライン分類器と比較して、最良のトレードオフ精度/計算コストを与えることを示した。
関連論文リスト
- A General Online Algorithm for Optimizing Complex Performance Metrics [5.726378955570775]
我々は,バイナリ,マルチクラス,マルチラベルの分類問題において,様々な複雑なパフォーマンス指標を用いて,直接的に使用可能な汎用オンラインアルゴリズムを導入,分析する。
アルゴリズムの更新と予測のルールは、過去のデータを保存することなく、非常にシンプルで計算的に効率的である。
論文 参考訳(メタデータ) (2024-06-20T21:24:47Z) - Machine Learning Training Optimization using the Barycentric Correction
Procedure [0.0]
本研究では,機械学習アルゴリズムとBCP(Barycentric correct procedure)と呼ばれる効率的な手法を組み合わせることを提案する。
この組み合わせによって、実データと合成データの時間に関する大きな利点が得られ、インスタンス数や次元が増加すると精度を損なうことなく得られることがわかった。
論文 参考訳(メタデータ) (2024-03-01T13:56:36Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
現実世界の機械学習アプリケーションは、膨大な機能によって特徴付けられ、計算やメモリの問題を引き起こす。
一般集約関数を用いて特徴量の非線形変換を集約する次元還元アルゴリズム(NonLinCFA)を提案する。
また、アルゴリズムを合成および実世界のデータセット上でテストし、回帰および分類タスクを実行し、競合性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:57:33Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Continual Learning For On-Device Environmental Sound Classification [63.81276321857279]
デバイス上での環境音の分類のための簡易かつ効率的な連続学習法を提案する。
本手法は,サンプルごとの分類の不確実性を測定することにより,トレーニングの履歴データを選択する。
論文 参考訳(メタデータ) (2022-07-15T12:13:04Z) - On Principal Curve-Based Classifiers and Similarity-Based Selective
Sampling in Time-Series [0.0]
本稿では,モデル定義における主曲線を構築ブロックとして用いることにより,同じ計算ステップを持つ決定論的選択的サンプリングアルゴリズムを提案する。
オンライン監視装置のラベル付けコストや問題を考えると、ラベルを知っていれば分類器の性能が向上するデータポイントを見つけるアルゴリズムが存在するはずである。
論文 参考訳(メタデータ) (2022-04-10T07:28:18Z) - Implicit Parameter-free Online Learning with Truncated Linear Models [51.71216912089413]
パラメータフリーアルゴリズムは、設定された学習率を必要としないオンライン学習アルゴリズムである。
そこで我々は,「単純」なフレーバーを持つ新しい更新によって,切り離された線形モデルを活用できる新しいパラメータフリーアルゴリズムを提案する。
後悔の新たな分解に基づいて、新しい更新は効率的で、各ステップで1つの勾配しか必要とせず、切り捨てられたモデルの最小値をオーバーシュートすることはない。
論文 参考訳(メタデータ) (2022-03-19T13:39:49Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Tighter Bound Estimation of Sensitivity Analysis for Incremental and
Decremental Data Modification [39.62854914952284]
大規模な分類問題では、データの一部が元のデータセットに追加または削除された場合、データセットは常に頻繁な更新に直面する。
本稿では, 線形分類器を正確に更新することなく, 線形分類器について合理的な推論を行うアルゴリズムを提案する。
理論的解析と実験の結果から,提案手法は係数境界の厳密性や計算複雑性の観点から既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-03-06T18:28:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。