論文の概要: Optimal Operation of Power Systems with Energy Storage under
Uncertainty: A Scenario-based Method with Strategic Sampling
- arxiv url: http://arxiv.org/abs/2107.10013v1
- Date: Wed, 21 Jul 2021 11:21:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-22 14:21:50.316467
- Title: Optimal Operation of Power Systems with Energy Storage under
Uncertainty: A Scenario-based Method with Strategic Sampling
- Title(参考訳): 不確実性下における電力貯蔵システムの最適運用:戦略サンプリングを用いたシナリオベース手法
- Authors: Ren Hu and Qifeng Li
- Abstract要約: エネルギー貯蔵(ES)、断続再生可能エネルギー、制御不能電力負荷の多周期ダイナミクスは、電力系統運用(PSO)の最適化を困難にしている。
不確実性下での多周期最適PSOは、確率制約付き確率最適化(CCO)モデルパラダイムを用いて定式化される。
本稿では,この難解なCCO問題に対する新しい解法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The multi-period dynamics of energy storage (ES), intermittent renewable
generation and uncontrollable power loads, make the optimization of power
system operation (PSO) challenging. A multi-period optimal PSO under
uncertainty is formulated using the chance-constrained optimization (CCO)
modeling paradigm, where the constraints include the nonlinear energy storage
and AC power flow models. Based on the emerging scenario optimization method
which does not rely on pre-known probability distribution functions, this paper
develops a novel solution method for this challenging CCO problem. The proposed
meth-od is computationally effective for mainly two reasons. First, the
original AC power flow constraints are approximated by a set of
learning-assisted quadratic convex inequalities based on a generalized least
absolute shrinkage and selection operator. Second, considering the physical
patterns of data and motived by learning-based sampling, the strategic sampling
method is developed to significantly reduce the required number of scenarios
through different sampling strategies. The simulation results on IEEE standard
systems indicate that 1) the proposed strategic sampling significantly improves
the computational efficiency of the scenario-based approach for solving the
chance-constrained optimal PSO problem, 2) the data-driven convex approximation
of power flow can be promising alternatives of nonlinear and nonconvex AC power
flow.
- Abstract(参考訳): エネルギー貯蔵(ES)、断続再生可能エネルギー、制御不能電力負荷の多周期ダイナミクスは、電力系統運用(PSO)の最適化を困難にしている。
不確実性下での多周期最適PSOは、非線形エネルギー貯蔵と交流電力フローモデルを含む確率制約最適化(CCO)モデルパラダイムを用いて定式化される。
本稿では, 既知確率分布関数に依存しない新たなシナリオ最適化手法を考案し, この問題に対する新しい解法を提案する。
提案手法は,主に2つの理由から有効である。
まず、最初の交流電力フロー制約は、一般化された最小絶対収縮選択演算子に基づく学習支援二次凸不等式によって近似される。
第2に,データの物理的パターンと学習に基づくサンプリングの動機を考慮し,異なるサンプリング戦略によって要求されるシナリオ数を著しく削減する戦略サンプリング手法を開発した。
IEEE標準システムのシミュレーション結果から,1) 提案した戦略サンプリングは, 確率制約付き最適PSO問題の解法におけるシナリオベースアプローチの計算効率を著しく向上し, 2) 電力フローのデータ駆動凸近似は非線形および非凸交流流の代替となる可能性が示唆された。
関連論文リスト
- Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Learning-assisted Stochastic Capacity Expansion Planning: A Bayesian Optimization Approach [3.124884279860061]
大規模容量拡大問題(CEP)は、地域エネルギーシステムのコスト効率の高い脱炭の中心である。
本稿では,2段階のCEPを抽出する学習支援近似解法を提案する。
本手法では, 直列集約法と比較して最大3.8%のコスト削減効果が得られた。
論文 参考訳(メタデータ) (2024-01-19T01:40:58Z) - An Efficient Learning-Based Solver for Two-Stage DC Optimal Power Flow with Feasibility Guarantees [4.029937264494929]
本稿では,より効率的かつ最適な方法で2段階問題の解法を提案する。
ゲージマップと呼ばれるテクニックが学習アーキテクチャ設計に組み込まれ、学習したソリューションがネットワークの制約に対して実現可能であることを保証する。
論文 参考訳(メタデータ) (2023-04-03T22:56:08Z) - Data-Driven Stochastic AC-OPF using Gaussian Processes [54.94701604030199]
大量の再生可能エネルギーを電力網に統合することは、おそらく気候変動を遅らせる電力網からの二酸化炭素排出量を減らす最も有効な方法だろう。
本稿では、不確実な入力を組み込むことのできる交流電力流方程式に基づく代替データ駆動方式を提案する。
GPアプローチは、このギャップを交流電力流方程式に閉じるために、単純だが制約のないデータ駆動アプローチを学ぶ。
論文 参考訳(メタデータ) (2022-07-21T23:02:35Z) - Model-Informed Generative Adversarial Network (MI-GAN) for Learning
Optimal Power Flow [5.407198609685119]
最適電力フロー(OPF)問題は、電力系統の運用において重要な要素であり、電力系統にたらされる再生可能エネルギーの変動、断続性、予測不能により、解決がますます困難になる。
ニューラルネットワークのようなディープラーニング技術は、最近、データの利用によってOPF問題を解決する際の計算効率を改善するために開発されている。
本稿では,不確実性下でOPFを解決するための最適化モデルインフォームド・ジェネレーティブ・逆数ネットワーク(MI-GAN)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-04T00:37:37Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
政治政策の最適化は強化学習において難しい問題である。
オフポリシーアルゴリズムはメモリ効率が高く、オフポリシーサンプルから学ぶことができる。
論文 参考訳(メタデータ) (2020-09-14T16:22:46Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。