論文の概要: Neural Two-Stage Stochastic Optimization for Solving Unit Commitment Problem
- arxiv url: http://arxiv.org/abs/2507.09503v1
- Date: Sun, 13 Jul 2025 05:55:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.368003
- Title: Neural Two-Stage Stochastic Optimization for Solving Unit Commitment Problem
- Title(参考訳): 解法ユニットコミット問題に対するニューラル2段階確率最適化
- Authors: Zhentong Shao, Jingtao Qin, Nanpeng Yu,
- Abstract要約: 本稿では,高次元不確実性シナリオ下での2段階単位コミットメント(2S-SUC)問題を効率的に解くためのニューラルネットワーク最適化手法を提案する。
提案手法は,コミットメント決定と不確実性特徴を学習したディープニューラルネットワークを用いて,第2段階のリコース問題に近似する。
- 参考スコア(独自算出の注目度): 0.8848340429852071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a neural stochastic optimization method for efficiently solving the two-stage stochastic unit commitment (2S-SUC) problem under high-dimensional uncertainty scenarios. The proposed method approximates the second-stage recourse problem using a deep neural network trained to map commitment decisions and uncertainty features to recourse costs. The trained network is subsequently embedded into the first-stage UC problem as a mixed-integer linear program (MILP), allowing for explicit enforcement of operational constraints while preserving the key uncertainty characteristics. A scenario-embedding network is employed to enable dimensionality reduction and feature aggregation across arbitrary scenario sets, serving as a data-driven scenario reduction mechanism. Numerical experiments on IEEE 5-bus, 30-bus, and 118-bus systems demonstrate that the proposed neural two-stage stochastic optimization method achieves solutions with an optimality gap of less than 1%, while enabling orders-of-magnitude speedup compared to conventional MILP solvers and decomposition-based methods. Moreover, the model's size remains constant regardless of the number of scenarios, offering significant scalability for large-scale stochastic unit commitment problems.
- Abstract(参考訳): 本稿では,2段階確率単位コミットメント(2S-SUC)問題を高次元不確実性シナリオ下で効率的に解くためのニューラル確率最適化法を提案する。
提案手法は,コミットメント決定と不確実性特徴を学習したディープニューラルネットワークを用いて,第2段階のリコース問題に近似する。
訓練されたネットワークはその後、MILP(mixed-integer linear program)として第一段階のUC問題に組み込まれ、重要な不確実性特性を保ちながら、運用上の制約を明示的に実施することができる。
データ駆動型シナリオリダクション機構として機能するシナリオ埋め込みネットワークを用いて,任意のシナリオセットにまたがる次元的縮小と特徴集約を実現する。
IEEE 5-bus, 30-bus, 118-busシステムの数値実験により, 提案した2段階確率最適化法は, 従来のMILP解法や分解法と比較して, 最適解の差を1%以下に抑えながら, オーダー・オブ・マグニチュード・スピードアップを実現していることが示された。
さらに、モデルのサイズはシナリオの数に関係なく一定であり、大規模な確率的単位コミットメント問題に対して大きなスケーラビリティを提供する。
関連論文リスト
- An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control [14.832859803172846]
本稿では、最適制御(SOC)問題を解決するための新しいオン政治アルゴリズムを提案する。
ギルサノフの定理を利用することで、微分方程式や随伴問題解による高価なバックプロパゲーションを伴わずに、SOC対象の政治的勾配を直接計算する。
実験により,従来の手法に比べて計算速度とメモリ効率が大幅に向上した。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Rational-WENO: A lightweight, physically-consistent three-point weighted essentially non-oscillatory scheme [14.120671138290104]
我々は、解の局所的な滑らかさを正確に推定するために有理ニューラルネットワークを用いる。
この手法は, 散逸を著しく低減した粒度の再構築を実現する。
提案手法の有効性を,数個の1次元,2次元,3次元の流体問題に対して示す。
論文 参考訳(メタデータ) (2024-09-13T22:11:03Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
制約付きマルコフ決定プロセス(CMDP)は、多くの高度な応用において重要である。
本稿では,パラメトリックアクターポリシーを効率的に訓練するための2段階深度決定規則(TS-DDR)を提案する。
現状の手法と比較して, 解の質を高め, 数桁の計算時間を削減できることが示されている。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization [9.28162057044835]
最適軌道局所は非線形および高次元力学系において計算コストが高い。
本稿では,非次元オプティマ問題に対するDiffuに基づく一般モデルを提案する。
また,新たな制約付き拡散モデルであるDiff+を提案する。
論文 参考訳(メタデータ) (2024-02-22T03:52:17Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
我々は,多段階最適化問題に対する非パラメトリック,データ駆動,トラクタブルアプローチを開発した。
本稿では,提案手法が最適に近い平均性能で決定ルールを生成することを示す。
論文 参考訳(メタデータ) (2023-03-11T23:19:32Z) - ARES: An Efficient Algorithm with Recurrent Evaluation and Sampling-Driven Inference for Maximum Independent Set [48.57120672468062]
本稿では、2つの革新的な手法を取り入れたMIS問題に対する効率的なアルゴリズムを提案する。
提案アルゴリズムは、解の質、計算効率、安定性の点で最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2022-08-16T14:39:38Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
本稿では,プロアクティブキャッシングのための新しいフレームワークを提案する。
モデルベースの最適化とデータ駆動技術を組み合わせて、最適化問題をグレースケールのイメージに変換する。
数値計算の結果,提案手法は71.6%の計算時間を0.8%のコストで削減できることがわかった。
論文 参考訳(メタデータ) (2021-08-15T21:32:47Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems [1.6709415233613623]
本稿では,分散的に不確実な力学系のクラスを対象とする最適化問題 (P) に対して,データ駆動型オンラインソリューションを構築するための新しい手法を提案する。
導入されたフレームワークは、パラメータ化された制御依存のあいまいさセットを通じて、分散システムの不確実性の同時学習を可能にする。
また、Nesterovの高速化段階アルゴリズムのオンライン版を導入し、その性能を分析して、分散性理論を用いてこの問題のクラスを解く。
論文 参考訳(メタデータ) (2021-02-18T01:49:06Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。