Synchronized coherent charge oscillations in coupled double quantum dots
- URL: http://arxiv.org/abs/2107.10218v2
- Date: Mon, 18 Oct 2021 14:15:31 GMT
- Title: Synchronized coherent charge oscillations in coupled double quantum dots
- Authors: Eric Kleinherbers, Philipp Stegmann, J\"urgen K\"onig
- Abstract summary: We study coherent oscillations in double quantum dots tunnel-coupled to metallic leads by means of full counting statistics of electron transport.
We suggest to use waiting-time distributions and the $g(2)$-correlation function to detect the common frequency and the phase locking.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study coherent oscillations in double quantum dots tunnel-coupled to
metallic leads by means of full counting statistics of electron transport. If
two such systems are coupled by Coulomb interaction, there are in total six
(instead of only two) oscillation modes of the entangled system with
interaction-dependent oscillation frequencies. By tuning the bias voltage, one
can engineer decoherence such that only one of the six modes, in which the
charge oscillations in both double quantum dots become synchronized in
antiphase, is singled out. We suggest to use waiting-time distributions and the
$g^{(2)}$-correlation function to detect the common frequency and the phase
locking.
Related papers
- Quantum synchronization and entanglement of indirectly coupled
mechanical oscillators in cavity optomechanics: a numerical study [0.0]
It is often conjectured that quantum synchronisation and entanglement are two independent properties which two coupled quantum systems may not exhibit at the same time.
We show that in the presence of the cavity-oscillator coupling, these oscillators can be synchronized in the quantum sense and entangled as well.
arXiv Detail & Related papers (2023-05-07T05:51:18Z) - Entanglement as a sufficient condition for quantum synchronization
between two mechanical oscillators [0.0]
We present an optomechanical model to show that entanglement can be a sufficient condition for quantum synchronization.
We show that entanglement always becomes accompanied by quantum synchronization, though the reverse is not necessarily true.
This behaviour can be observed for a large range of system parameters.
arXiv Detail & Related papers (2023-05-04T14:20:51Z) - Flux-Tunable Hybridization in a Double Quantum Dot Interferometer [7.0140131556353]
tuning of the tunnel coupling between two such electronic levels with flux, implemented in a loop comprising two quantum dots.
Results establish the feasibility and limitations of parity readout of qubits with tunnel couplings tuned by flux.
arXiv Detail & Related papers (2023-03-07T18:57:31Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Probing two-qubit capacitive interactions beyond bilinear regime using
dual Hamiltonian parameter estimations [0.0]
We report the simultaneous operation and two-qubit coupling measurement of a pair of two-electron spin qubits in a GaAs quadruple quantum dot array.
Coherent Rabi oscillations of both qubits are achieved by continuously tuning the drive frequency.
By state conditional exchange oscillation measurements, we also observe strong two-qubit capacitive interaction.
arXiv Detail & Related papers (2022-06-09T07:49:07Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - Implementation and enhancement of nonreciprocal quantum synchronization
with strong isolation in antiferromagnet-cavity systems [12.330326247154968]
We show how to achieve nonreciprocal quantum synchronization for two magnon modes in a two-sublattice antiferromagnet with strong isolation.
arXiv Detail & Related papers (2021-05-28T00:55:08Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Switching dynamics of single and coupled VO2-based oscillators as
elements of neural networks [55.41644538483948]
We report on the switching dynamics of both single and coupled VO2-based oscillators, with resistive and capacitive coupling, and explore the capability of their application in neural networks.
For the resistive coupling, it is shown that synchronization takes place at a certain value of the coupling resistance, though it is unstable and a synchronization failure occurs periodically.
For the capacitive coupling, two synchronization modes, with weak and strong coupling, are found. The transition between these modes is accompanied by chaotic oscillations.
arXiv Detail & Related papers (2020-01-07T02:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.