Quantum synchronization and entanglement of indirectly coupled
mechanical oscillators in cavity optomechanics: a numerical study
- URL: http://arxiv.org/abs/2305.04197v1
- Date: Sun, 7 May 2023 05:51:18 GMT
- Title: Quantum synchronization and entanglement of indirectly coupled
mechanical oscillators in cavity optomechanics: a numerical study
- Authors: Devender Garg, Manju, Shubhrangshu Dasgupta, Asoka Biswas
- Abstract summary: It is often conjectured that quantum synchronisation and entanglement are two independent properties which two coupled quantum systems may not exhibit at the same time.
We show that in the presence of the cavity-oscillator coupling, these oscillators can be synchronized in the quantum sense and entangled as well.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is often conjectured that quantum synchronisation and entanglement are two
independent properties which two coupled quantum systems may not exhibit at the
same time. However, as both these properties can be understood in terms of the
second order moments of a set of conjugate quadratures, there may exist
specific conditions for simultaneous existence of entanglement and quantum
synchronization. Here we present a theoretical scheme to achieve the same
between two mechanical oscillators, which are indirectly coupled with each
other via a coupling between two cavities. We show that in the presence of the
cavity-oscillator coupling, quadratically varying with their displacements,
these oscillators can be synchronized in the quantum sense and entangled as
well, at times much longer than the decay time-scale of the cavity modes.
Precisely speaking, we show that in the presence of quadratic coupling,
entanglement criterion and quantum synchronization measure are simultaneously
satisfied in steady state. This behaviour can be observed for a range of
quadratic coupling, temperature, and frequency difference of the two
oscillators.
Related papers
- Quantum synchronization between two spin chains using pseudo-bosonic equivalence [0.9374652839580183]
We explore the quantum synchronization of two finite chains of spin-1/2 particles, via a nonlinear interaction mediated by a a central intermediary spin chain.
We show that quantum synchronization is robust against variations in the number of spins and inter-spin coupling, though may be affected by thermal noise.
This work advances the understanding of synchronization in multi-spin systems and introduces a generalized synchronization measure for both bosons and fermions.
arXiv Detail & Related papers (2024-08-12T13:11:40Z) - Measurement-Induced Quantum Synchronization and Multiplexing [0.0]
We formulate general criteria for this quantum phenomenon to occur, and demonstrate that the number of synchronized realizations can be controlled from none to all.
Measurement-induced synchronization appears as a genuine nonclassical form of synchrony that exploits quantum superpositions.
arXiv Detail & Related papers (2023-06-22T15:43:55Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Transfer of quantum states and stationary quantum correlations in a
hybrid optomechanical network [6.216381549252352]
We study the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network.
It is found that high fidelity transfer of Schr"odinger's cat and squeezed states between the cavities modes is possible.
arXiv Detail & Related papers (2023-05-29T17:58:04Z) - Entanglement as a sufficient condition for quantum synchronization
between two mechanical oscillators [0.0]
We present an optomechanical model to show that entanglement can be a sufficient condition for quantum synchronization.
We show that entanglement always becomes accompanied by quantum synchronization, though the reverse is not necessarily true.
This behaviour can be observed for a large range of system parameters.
arXiv Detail & Related papers (2023-05-04T14:20:51Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Switching dynamics of single and coupled VO2-based oscillators as
elements of neural networks [55.41644538483948]
We report on the switching dynamics of both single and coupled VO2-based oscillators, with resistive and capacitive coupling, and explore the capability of their application in neural networks.
For the resistive coupling, it is shown that synchronization takes place at a certain value of the coupling resistance, though it is unstable and a synchronization failure occurs periodically.
For the capacitive coupling, two synchronization modes, with weak and strong coupling, are found. The transition between these modes is accompanied by chaotic oscillations.
arXiv Detail & Related papers (2020-01-07T02:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.