論文の概要: Neural Fixed-Point Acceleration for Convex Optimization
- arxiv url: http://arxiv.org/abs/2107.10254v2
- Date: Fri, 23 Jul 2021 17:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 11:00:57.928224
- Title: Neural Fixed-Point Acceleration for Convex Optimization
- Title(参考訳): 凸最適化のためのニューラル固定点加速
- Authors: Shobha Venkataraman, Brandon Amos
- Abstract要約: 本稿では,メタラーニング法と古典的加速度法を併用したニューラル固定点加速法を提案する。
コンベックスコーンプログラミングのための最先端の解法であるSCSに,我々のフレームワークを適用した。
- 参考スコア(独自算出の注目度): 10.06435200305151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fixed-point iterations are at the heart of numerical computing and are often
a computational bottleneck in real-time applications that typically need a fast
solution of moderate accuracy. We present neural fixed-point acceleration which
combines ideas from meta-learning and classical acceleration methods to
automatically learn to accelerate fixed-point problems that are drawn from a
distribution. We apply our framework to SCS, the state-of-the-art solver for
convex cone programming, and design models and loss functions to overcome the
challenges of learning over unrolled optimization and acceleration
instabilities. Our work brings neural acceleration into any optimization
problem expressible with CVXPY. The source code behind this paper is available
at https://github.com/facebookresearch/neural-scs
- Abstract(参考訳): 固定点反復は数値計算の中心であり、適度な精度の高速解を必要とするリアルタイムアプリケーションでは、しばしば計算ボトルネックとなる。
本研究では,メタ学習法と古典的加速度法を組み合わせたニューラル不動点加速度法を提案し,分布から引き出される不動点問題を自動学習する。
我々は,convex coneプログラミングの最先端解法であるscsと設計モデルと損失関数に適用し,未熟な最適化と高速化の不安定性よりも学習の課題を克服した。
我々の研究は、CVXPYで表現可能な最適化問題に神経加速度をもたらす。
この論文のソースコードはhttps://github.com/facebookresearch/neural-scsで入手できる。
関連論文リスト
- Metamizer: a versatile neural optimizer for fast and accurate physics simulations [4.717325308876749]
本稿では,広範囲の物理システムを高精度で反復的に解く,新しいニューラルネットワークであるMetamizerを紹介する。
我々は,メタマイザがディープラーニングに基づくアプローチにおいて,前例のない精度で達成できることを実証した。
以上の結果から,メタミザーは将来の数値解法に大きな影響を与える可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-10T11:54:31Z) - Mechanic: A Learning Rate Tuner [52.4242550204696]
我々は,任意の基本最適化アルゴリズムの学習率尺度係数を調整し,自動的にスケジュールする手法を導入し,それをテクスチャメカニックと呼ぶ。
各種バッチサイズ,スケジュール,基本最適化アルゴリズムを用いて,大規模深層学習タスクにおけるテクスチャメカニックを厳格に評価する。
論文 参考訳(メタデータ) (2023-05-31T19:32:43Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization [35.66014845211251]
非剛性登録は、ターゲット形状と整合する非剛性な方法でソース形状を変形させるが、コンピュータビジョンにおける古典的な問題である。
既存のメソッドは通常$ell_p$型ロバストノルムを使用してアライメントエラーを測定し、変形の滑らかさを規則化する。
本稿では、アライメントと正規化のためのグローバルなスムーズなロバストノルムに基づく、ロバストな非剛体登録のための定式化を提案する。
論文 参考訳(メタデータ) (2022-06-07T16:00:33Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Accelerating GMRES with Deep Learning in Real-Time [0.0]
GMRESの解決までの時間を短縮するために使用できるリアルタイム機械学習アルゴリズムを紹介します。
私たちのフレームワークは、ディープラーニングアルゴリズムをその場で統合する点で、斬新です。
論文 参考訳(メタデータ) (2021-03-19T18:21:38Z) - GradInit: Learning to Initialize Neural Networks for Stable and
Efficient Training [59.160154997555956]
ニューラルネットワークを初期化するための自動化およびアーキテクチャ手法であるgradinitを提案する。
各ネットワーク層の分散は、SGDまたはAdamの単一ステップが最小の損失値をもたらすように調整される。
また、学習率のウォームアップを伴わずに、オリジナルのPost-LN Transformerを機械翻訳用にトレーニングすることもできる。
論文 参考訳(メタデータ) (2021-02-16T11:45:35Z) - AutoInt: Automatic Integration for Fast Neural Volume Rendering [51.46232518888791]
暗黙的ニューラル表現ネットワークを用いて、積分に対する効率的でクローズドな解を学習するための新しいフレームワークを提案する。
我々は,高速なニューラルボリュームレンダリングを実現するために,フォトリアリスティックな要件を10倍以上に改善したことを示す。
論文 参考訳(メタデータ) (2020-12-03T05:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。