Predicting Power Electronics Device Reliability under Extreme Conditions
with Machine Learning Algorithms
- URL: http://arxiv.org/abs/2107.10292v1
- Date: Wed, 21 Jul 2021 18:17:32 GMT
- Title: Predicting Power Electronics Device Reliability under Extreme Conditions
with Machine Learning Algorithms
- Authors: Carlos Olivares, Raziur Rahman, Christopher Stankus, Jade Hampton,
Andrew Zedwick, Moinuddin Ahmed
- Abstract summary: We have utilized machine learning algorithms to predict device reliability.
To train the models, we have tested 224 power devices from 10 different manufacturers.
We observed that computational models such as Gradient Boosting and LSTM encoder-decoder networks can predict power device failure with high accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Power device reliability is a major concern during operation under extreme
environments, as doing so reduces the operational lifetime of any power system
or sensing infrastructure. Due to a potential for system failure, devices must
be experimentally validated before implementation, which is expensive and
time-consuming. In this paper, we have utilized machine learning algorithms to
predict device reliability, significantly reducing the need for conducting
experiments. To train the models, we have tested 224 power devices from 10
different manufacturers. First, we describe a method to process the data for
modeling purposes. Based on the in-house testing data, we implemented various
ML models and observed that computational models such as Gradient Boosting and
LSTM encoder-decoder networks can predict power device failure with high
accuracy.
Related papers
- Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - A Self-Commissioning Edge Computing Method for Data-Driven Anomaly
Detection in Power Electronic Systems [0.0]
Methods that work well in controlled lab environments to field applications presents significant challenges.
Online machine learning can be a powerful tool to overcome this problem, but it introduces additional challenges in ensuring the stability and predictability of the training processes.
This work presents an edge computing method that mitigates these shortcomings with minimal additional memory usage.
arXiv Detail & Related papers (2023-12-05T10:56:25Z) - Machine Learning-powered Compact Modeling of Stochastic Electronic
Devices using Mixture Density Networks [0.0]
Conventional deterministic models fall short when it comes to capture the subtle yet critical variability exhibited by many electronic components.
We present an innovative approach that transcends the limitations of traditional modeling techniques by harnessing the power of machine learning.
This paper marks a significant step forward in the quest for accurate and versatile compact models, poised to drive innovation in the realm of electronic circuits.
arXiv Detail & Related papers (2023-11-10T01:34:18Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - In-flight Novelty Detection with Convolutional Neural Networks [0.0]
This paper proposes that system output measurements are prioritised in real-time for the attention of preventative maintenance decision makers.
We present a data-driven system for online detection and prioritisation of anomalous data.
The system is capable of running in real-time on low-power embedded hardware and is currently in deployment on the Rolls-Royce Pearl 15 engine flight trials.
arXiv Detail & Related papers (2021-12-07T15:19:41Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
We study several efficient pre-training objectives for Transformers-based models.
We prove that eliminating the MASK token and considering the whole output during the loss are essential choices to improve performance.
arXiv Detail & Related papers (2021-04-20T00:09:37Z) - Predictive Maintenance for Edge-Based Sensor Networks: A Deep
Reinforcement Learning Approach [68.40429597811071]
The risk of unplanned equipment downtime can be minimized through Predictive Maintenance of revenue generating assets.
A model-free Deep Reinforcement Learning algorithm is proposed for predictive equipment maintenance from an equipment-based sensor network context.
Unlike traditional black-box regression models, the proposed algorithm self-learns an optimal maintenance policy and provides actionable recommendation for each equipment.
arXiv Detail & Related papers (2020-07-07T10:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.