Temperature Estimation in Induction Motors using Machine Learning
- URL: http://arxiv.org/abs/2504.18105v1
- Date: Fri, 25 Apr 2025 06:22:31 GMT
- Title: Temperature Estimation in Induction Motors using Machine Learning
- Authors: Dinan Li, Panagiotis Kakosimos,
- Abstract summary: Monitoring the internal temperatures of motors and keeping them under their thresholds is an important first step.<n>With all the data a modern electric drive collects nowadays during the system operation, it is feasible to apply data-driven approaches for estimating thermal behaviors.<n>In this paper, multiple machine-learning methods are investigated on their capability to approximate the temperatures of the stator winding and bearing in induction motors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The number of electrified powertrains is ever increasing today towards a more sustainable future; thus, it is essential that unwanted failures are prevented, and a reliable operation is secured. Monitoring the internal temperatures of motors and keeping them under their thresholds is an important first step. Conventional modeling methods require expert knowledge and complicated mathematical approaches. With all the data a modern electric drive collects nowadays during the system operation, it is feasible to apply data-driven approaches for estimating thermal behaviors. In this paper, multiple machine-learning methods are investigated on their capability to approximate the temperatures of the stator winding and bearing in induction motors. The explored algorithms vary from linear to neural networks. For this reason, experimental lab data have been captured from a powertrain under predetermined operating conditions. For each approach, a hyperparameter search is then performed to find the optimal configuration. All the models are evaluated by various metrics, and it has been found that neural networks perform satisfactorily even under transient conditions.
Related papers
- Reliable Thermal Monitoring of Electric Machines through Machine Learning [0.0]
It is essential to monitor the internal temperatures of machines and keep them within safe operating limits.
With the amount of data collected these days, it is possible to use information models to assess thermal behaviors.
This paper investigates artificial intelligence techniques for monitoring the cooling efficiency of induction machines.
arXiv Detail & Related papers (2025-04-27T07:44:29Z) - Machine learning-based condition monitoring of powertrains in modern electric drives [0.0]
Leveraging data analytics has enabled the collection of deep insights into the performance and, as a result, the optimization of assets.<n>Data already residing in most modern electric drives has been used to develop a data-driven thermal model of a power module.
arXiv Detail & Related papers (2025-04-24T06:59:38Z) - A Physics-guided Multimodal Transformer Path to Weather and Climate Sciences [59.05404971880922]
Many problems in meteorology can now be addressed using AI models.<n>Data-driven algorithms have significantly improved accuracy compared to traditional methods.<n>We propose a new paradigm where observational data from different perspectives are treated as multimodal data and integrated via transformers.
arXiv Detail & Related papers (2025-04-19T04:31:35Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Passive and Active Learning of Driver Behavior from Electric Vehicles [2.9623902973073375]
Modeling driver behavior provides several advantages in the automotive industry, including prediction of electric vehicle energy consumption.
Machine learning methods are widely used for driver behavior classification, which may yield some challenges.
These include sequence modeling on long time windows and lack of labeled data due to expensive annotation.
arXiv Detail & Related papers (2022-03-04T08:18:02Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Thermal Neural Networks: Lumped-Parameter Thermal Modeling With
State-Space Machine Learning [0.0]
Thermal models for electric power systems are required to be both, real-time capable and of high estimation accuracy.
In this work, the thermal neural network (TNN) is introduced, which unifies both, consolidated knowledge in the form of heat-transfer-based lumped- parameter models.
A TNN has physically interpretable states through its state-space representation, is end-to-end trainable, and requires no material, geometry, nor expert knowledge for its design.
arXiv Detail & Related papers (2021-03-30T13:15:48Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
Monitoring the magnet temperature in permanent magnet synchronous motors (PMSMs) for automotive applications is a challenging task.
Overheating results in severe motor deterioration and is thus of high concern for the machine's control strategy and its design.
Several machine learning (ML) models are empirically evaluated on their estimation accuracy for the task of predicting latent high-dynamic magnet temperature profiles.
arXiv Detail & Related papers (2020-01-17T11:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.