Towards $\textit{ab initio}$ identification of paramagnetic
substitutional carbon defects in hexagonal boron nitride acting as quantum
bits
- URL: http://arxiv.org/abs/2107.10366v1
- Date: Wed, 21 Jul 2021 21:53:45 GMT
- Title: Towards $\textit{ab initio}$ identification of paramagnetic
substitutional carbon defects in hexagonal boron nitride acting as quantum
bits
- Authors: Philipp Auburger and Adam Gali
- Abstract summary: Paramagnetic substitutional carbon (C$_textB$, C$_textN$) defects in hexagonal boron nitride (hBN) are discussed as candidates for quantum bits.
Their identification and suitability are approached by means of photoluminescence (PL), charge transitions, electron paramagnetic resonance, and optically detected magnetic resonance (ODMR) spectra.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Paramagnetic substitutional carbon (C$_\text{B}$, C$_\text{N}$) defects in
hexagonal boron nitride (hBN) are discussed as candidates for quantum bits.
Their identification and suitability are approached by means of
photoluminescence (PL), charge transitions, electron paramagnetic resonance,
and optically detected magnetic resonance (ODMR) spectra. Several clear trends
in these are revealed by means of an efficient plane wave periodic supercell
\textit{ab initio} density functional theory approach. In particular, this
yields insight into the role of the separation between C$_\text{B}$ and
C$_\text{N}$. In most of the cases the charge transition between the neutral
and a singly charged ground state of a defect is predicted to be experimentally
accessible, since the charge transition level (CTL) position lies within the
band gap. \textit{A posteriori} charge corrections are also discussed. A
near-identification of an experimentally isolated single spin center as the
neutral C$_\text{B}$ point defect was found via comparison of results to
recently observed PL and ODMR spectra.
Related papers
- Magnetic field dependence of $V_B^-$ Defects in hexagonal boron nitride [5.426508182505848]
We study the influence of off-axis magnetic fields on the coherence properties of $V_B-$ defects in hBN.
Results are crucial for optimizing $V_B-$ defects in hBN, establishing their significance as robust quantum sensors.
arXiv Detail & Related papers (2024-10-09T10:40:05Z) - A planar defect spin sensor in a two-dimensional material susceptible to
strain and electric fields [0.0]
boron-vacancy spin defect ($textV_textB-$) in hexagonal boron nitride (hBN) has a great potential as a quantum sensor in a two-dimensional material.
We apply first principles calculations to determine the coupling of the $textV_textB-$ electronic spin to strain and electric fields.
arXiv Detail & Related papers (2023-04-02T09:11:10Z) - A first-principles calculation of electron-phonon interactions for the
$\text{C}_2\text{C}_\text{N}$ and $\text{V}_\text{N}\text{N}_\text{B}$
defects in hexagonal boron nitride [52.77024349608834]
Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest.
Recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature.
arXiv Detail & Related papers (2022-07-28T23:31:38Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Decoherence of V$_{\rm B}^{-}$ spin defects in monoisotopic hexagonal
boron nitride [0.0]
Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms.
Here we rely on hBN crystals isotopically enriched with either $10$B or $11$B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared.
arXiv Detail & Related papers (2021-12-19T15:51:07Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Excited-state spectroscopy of spin defects in hexagonal boron nitride [20.739656944743345]
We probed electron-spin resonance transitions in the excited state of negatively-charged boron vacancy defects in hexagonal boron nitride (hBN) at room temperature.
The data showed that the excited state has a zero-field splitting of 2.1 GHz, a g factor similar to the ground state and two types of hyperfine splitting 90 MHz and 18.8 MHz respectively.
Negative peaks in photoluminescence and ODMR contrast as a function of magnetic field magnitude and angle at level anti-crossing were observed and explained by coherent spin precession and anisotropic relaxation.
arXiv Detail & Related papers (2021-12-06T10:28:57Z) - $\textit{Ab initio}$ and group theoretical study of properties of the
$\text{C}_\text{2}\text{C}_\text{N}$ carbon trimer defect in h-BN [0.0]
Hexagonal boron nitride (h-BN) is a promising platform for quantum information processing.
Recent studies suggest that carbon trimers might be the defect responsible for single-photon emission in the visible spectral range in h-BN.
arXiv Detail & Related papers (2021-10-18T21:27:20Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z) - Two-Dimensional Single- and Multiple-Quantum Correlation Spectroscopy in
Zero-Field Nuclear Magnetic Resonance [55.41644538483948]
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero magnetic field using a Rb vapor-cell magnetometer.
At zero field the spectrum of ethanol appears as a mixture of carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra.
arXiv Detail & Related papers (2020-04-09T10:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.