Rule-Based Classification of Hyperspectral Imaging Data
- URL: http://arxiv.org/abs/2107.10638v1
- Date: Wed, 21 Jul 2021 10:11:41 GMT
- Title: Rule-Based Classification of Hyperspectral Imaging Data
- Authors: Songuel Polat, Alain Tremeau, Frank Boochs
- Abstract summary: We present a general classification approach based on the shape of spectral signatures.
In contrast to classical classification approaches (e.g. SVM, KNN), not only reflectance values are considered, but also parameters such as curvature points, curvature values, and the curvature behavior of spectral signatures are used.
The flexibility and efficiency of the methodology is demonstrated using datasets from two different application fields.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to its high spatial and spectral information content, hyperspectral
imaging opens up new possibilities for a better understanding of data and
scenes in a wide variety of applications. An essential part of this process of
understanding is the classification part. In this article we present a general
classification approach based on the shape of spectral signatures. In contrast
to classical classification approaches (e.g. SVM, KNN), not only reflectance
values are considered, but also parameters such as curvature points, curvature
values, and the curvature behavior of spectral signatures are used to develop
shape-describing rules in order to use them for classification by a rule-based
procedure using IF-THEN queries. The flexibility and efficiency of the
methodology is demonstrated using datasets from two different application
fields and leads to convincing results with good performance.
Related papers
- SPECIAL: Zero-shot Hyperspectral Image Classification With CLIP [10.658533866562689]
We introduce a novel zero-shot hyperspectral image classification framework based on CLIP (SPECIAL)
The SPECIAL framework consists of two main stages: (1) CLIP-based pseudo-label generation, and (2) noisy label learning.
Experimental results on three benchmark datasets demonstrate that our SPECIAL outperforms existing methods in zero-shot HSI classification.
arXiv Detail & Related papers (2025-01-27T17:13:03Z) - Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules [0.0]
Few-shot classification involves identifying new categories using a limited number of labeled samples.
This paper proposes a Feature Aligning Few-shot Learning Method Using Local Descriptors Weighted Rules (FAFD-LDWR)
It innovatively introduces a cross-normalization method into few-shot image classification to preserve the discriminative information of local descriptors as much as possible; and enhances classification performance by aligning key local descriptors of support and query sets to remove background noise.
arXiv Detail & Related papers (2024-08-26T11:36:38Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images.
The predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task.
arXiv Detail & Related papers (2023-02-06T18:10:08Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - A Novel Spatial-Spectral Framework for the Classification of
Hyperspectral Satellite Imagery [1.066048003460524]
We present a novel framework that takes into account both the spectral and spatial information contained in the data for land cover classification.
Our proposed methodology performs better than the earlier approaches by achieving an accuracy of 99.52% and 98.31% on the Pavia University and the Indian Pines datasets respectively.
arXiv Detail & Related papers (2020-07-22T16:12:08Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
In this study, we investigate various methods to capture discriminative information and simultaneously mitigate the overfitting problem.
We adopt a max feature map method to replace conventional non-linear activations in a deep neural network.
Two data augment methods and two deep architecture modules are further explored to reduce overfitting and sustain the system's discriminative power.
arXiv Detail & Related papers (2020-07-09T08:32:06Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shot segmentation aims at assigning a category label to each image pixel with few annotated samples.
Existing meta-learning method tends to fail in generating category-specifically discriminative descriptor when the visual features extracted from support images are marginalized in embedding space.
This paper presents an adaptive framework tuning, in which the distribution of latent features across different episodes is dynamically adjusted based on a self-segmentation scheme.
arXiv Detail & Related papers (2020-04-12T03:53:53Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
We first inject label-hierarchy knowledge into an arbitrary CNN-based classifier.
We empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance.
arXiv Detail & Related papers (2020-04-02T10:22:02Z) - Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis [0.5801044612920815]
A novel application of a locally-connected neural network (NN) for the binary classification of spectroscopy data is proposed.
A two-step classification process is presented as an alternative to the binary and one-class classification paradigms.
arXiv Detail & Related papers (2020-03-26T11:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.