論文の概要: Typing assumptions improve identification in causal discovery
- arxiv url: http://arxiv.org/abs/2107.10703v1
- Date: Thu, 22 Jul 2021 14:23:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-23 13:02:00.366408
- Title: Typing assumptions improve identification in causal discovery
- Title(参考訳): 型付け仮定は因果発見における識別を改善する
- Authors: Philippe Brouillard, Perouz Taslakian, Alexandre Lacoste, Sebastien
Lachapelle, Alexandre Drouin
- Abstract要約: 観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
- 参考スコア(独自算出の注目度): 123.06886784834471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery from observational data is a challenging task to which an
exact solution cannot always be identified. Under assumptions about the
data-generative process, the causal graph can often be identified up to an
equivalence class. Proposing new realistic assumptions to circumscribe such
equivalence classes is an active field of research. In this work, we propose a
new set of assumptions that constrain possible causal relationships based on
the nature of the variables. We thus introduce typed directed acyclic graphs,
in which variable types are used to determine the validity of causal
relationships. We demonstrate, both theoretically and empirically, that the
proposed assumptions can result in significant gains in the identification of
the causal graph.
- Abstract(参考訳): 観測データからの因果発見は、厳密な解を常に特定できない困難なタスクである。
データ生成過程に関する仮定の下では、因果グラフはしばしば同値クラスまで識別することができる。
このような同値類を包含する新しい現実的な仮定の提案は、活発な研究分野である。
本研究では,変数の性質に基づいて因果関係を制約する仮定を新たに提案する。
そこで我々は,因果関係の妥当性を決定するために,変数型を用いた有向非巡回グラフを導入する。
提案する仮定が因果グラフの同定において有意な利益をもたらすことを理論的および実証的に証明する。
関連論文リスト
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
観測データからの因果発見は、非常に有望である。
既存の手法は根底にある因果構造に関する強い仮定に依存している。
線形・非線形・潜在変数モデルにまたがる因果探索のためのフレキシブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-26T14:09:06Z) - Demystifying amortized causal discovery with transformers [21.058343547918053]
観測データからの因果発見のための教師付き学習アプローチは、しばしば競争性能を達成する。
本研究では,CSIvAについて検討する。CSIvAは,合成データのトレーニングと実データへの転送を約束するトランスフォーマーモデルである。
既存の識別可能性理論とギャップを埋め、トレーニングデータ分布の制約がテスト観測の事前を暗黙的に定義していることを示します。
論文 参考訳(メタデータ) (2024-05-27T08:17:49Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Towards Bounding Causal Effects under Markov Equivalence [13.050023008348388]
観測データのみを用いた因果関係の導出について考察する。
等価クラスの不変性を利用する因果効果のバウンダリを導出する体系的アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-11-13T11:49:55Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
クラスタ因果図(略してC-DAG)と呼ばれる新しいタイプのグラフィカルモデルを導入する。
C-DAGは、限定された事前知識に基づいて変数間の関係を部分的に定義することができる。
我々はC-DAGに対する因果推論のための基礎と機械を開発する。
論文 参考訳(メタデータ) (2022-02-22T21:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。