Learning Governing Equations of Unobserved States in Dynamical Systems
- URL: http://arxiv.org/abs/2404.18572v2
- Date: Tue, 7 May 2024 11:02:06 GMT
- Title: Learning Governing Equations of Unobserved States in Dynamical Systems
- Authors: Gevik Grigorian, Sandip V. George, Simon Arridge,
- Abstract summary: We employ a hybrid neural ODE structure to learn governing equations of partially-observed dynamical systems.
We demonstrate that the method is capable of successfully learning the true underlying governing equations of unobserved states within these systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven modelling and scientific machine learning have been responsible for significant advances in determining suitable models to describe data. Within dynamical systems, neural ordinary differential equations (ODEs), where the system equations are set to be governed by a neural network, have become a popular tool for this challenge in recent years. However, less emphasis has been placed on systems that are only partially-observed. In this work, we employ a hybrid neural ODE structure, where the system equations are governed by a combination of a neural network and domain-specific knowledge, together with symbolic regression (SR), to learn governing equations of partially-observed dynamical systems. We test this approach on two case studies: A 3-dimensional model of the Lotka-Volterra system and a 5-dimensional model of the Lorenz system. We demonstrate that the method is capable of successfully learning the true underlying governing equations of unobserved states within these systems, with robustness to measurement noise.
Related papers
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression [2.07180164747172]
We develop a framework that learns mathematical expressions modeling complex dynamical behaviors.
We train a small neural network to learn the dynamics of a system, its rate of change in time, and missing model terms.
This, in turn, enables us to predict the future evolution of the dynamical behavior.
arXiv Detail & Related papers (2023-12-21T18:58:41Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
The map is built as an artificial neural network whose weights encode a modeled system.
We consider the Lorenz system, the Roessler system and also Hindmarch-Rose neuron.
High similarity is observed for visual images of attractors, power spectra, bifurcation diagrams and Lyapunovs exponents.
arXiv Detail & Related papers (2021-03-06T16:02:41Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings.
NDS uses neural networks to estimate free parameters of the system, predicts residual terms, and numerically integrates over time to predict future states.
arXiv Detail & Related papers (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.