Synthesizing arbitrary dispersion relations in a modulated tilted
optical lattice
- URL: http://arxiv.org/abs/2107.11268v1
- Date: Fri, 23 Jul 2021 14:35:35 GMT
- Title: Synthesizing arbitrary dispersion relations in a modulated tilted
optical lattice
- Authors: Jean Claude Garreau and V\'eronique Zehnl\'e
- Abstract summary: Dispersion relations are fundamental characteristics of the dynamics of quantum and wave systems.
We show that adding a slow chirp to the lattice modulation allows one to reconstruct the dispersion relation from dynamical quantities.
We generalize the technique to higher dimensions, and generate graphene-like Dirac points and flat bands in two dimensions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dispersion relations are fundamental characteristics of the dynamics of
quantum and wave systems. In this work we introduce a simple technique to
generate arbitrary dispersion relations in a modulated tilted lattice. The
technique is illustrated by important examples: the Dirac, Bogoliubov and
Landau dispersion relations (the latter exhibiting the roton and the maxon). We
show that adding a slow chirp to the lattice modulation allows one to
reconstruct the dispersion relation from dynamical quantities. Finally, we
generalize the technique to higher dimensions, and generate graphene-like Dirac
points and flat bands in two dimensions.
Related papers
- G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - Equivalence of dynamics of disordered quantum ensembles and semi-infinite lattices [44.99833362998488]
We develop a formalism for mapping the exact dynamics of an ensemble of disordered quantum systems onto the dynamics of a single particle propagating along a semi-infinite lattice.
This mapping provides a geometric interpretation on the loss of coherence when averaging over the ensemble and allows computation of the exact dynamics of the entire disordered ensemble in a single simulation.
arXiv Detail & Related papers (2024-06-25T18:13:38Z) - Breakdown of Linear Spin-Wave Theory in a Non-Hermitian Quantum Spin Chain [0.0]
We present the spin-wave theory of the excitation spectrum and quench dynamics of the non-Hermitian transverse-field Ising model.
The complex excitation spectrum is obtained for a generic hypercubic lattice using the linear approximation of the Holstein-Primakoff transformation.
We show however that the linear spin-wave approximation breaks down and the bosonic theory is plagued by a divergence at finite times.
arXiv Detail & Related papers (2023-10-02T08:46:40Z) - Hyperbolic lattices and two-dimensional Yang-Mills theory [0.0]
Hyperbolic lattices are a new type of synthetic quantum matter emulated in circuit quantum electrodynamics and electric-circuit networks.
We show that moments of the density of states of hyperbolic tight-binding models correspond to expectation values of Wilson loops in the quantum gauge theory.
arXiv Detail & Related papers (2023-09-07T17:15:54Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Semiclassical Formulae For Wigner Distributions [0.0]
We give an overview over some aspects of the modern mathematical theory of Ruelle resonances for chaotic, i.e. uniformly hyperbolic, dynamical systems.
First we recall recent developments in the mathematical theory of resonances, in particular how invariant Ruelle distributions arise as residues of weighted zeta functions.
We derive a correspondence between weighted and semiclassical zeta functions in the setting of negatively curved surfaces.
arXiv Detail & Related papers (2022-01-13T11:25:36Z) - Conformal field theory from lattice fermions [77.34726150561087]
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions.
We show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
arXiv Detail & Related papers (2021-07-29T08:54:07Z) - Emergent fractal phase in energy stratified random models [0.0]
We study the effects of partial correlations in kinetic hopping terms of long-range random matrix models on their localization properties.
We show that any deviation from the completely correlated case leads to the emergent non-ergodic delocalization in the system.
arXiv Detail & Related papers (2021-06-07T18:00:01Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.