論文の概要: Re-distributing Biased Pseudo Labels for Semi-supervised Semantic
Segmentation: A Baseline Investigation
- arxiv url: http://arxiv.org/abs/2107.11279v1
- Date: Fri, 23 Jul 2021 14:45:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 13:53:11.374181
- Title: Re-distributing Biased Pseudo Labels for Semi-supervised Semantic
Segmentation: A Baseline Investigation
- Title(参考訳): 半教師付き意味セグメンテーションのためのバイアス付き擬似ラベルの再分配:ベースライン調査
- Authors: Ruifei He, Jihan Yang, Xiaojuan Qi
- Abstract要約: 疑似ラベルを生成するために,DARS法とDARS法を提案する。
我々の手法は最先端の手法と比較して好適に機能する。
- 参考スコア(独自算出の注目度): 30.688753736660725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While self-training has advanced semi-supervised semantic segmentation, it
severely suffers from the long-tailed class distribution on real-world semantic
segmentation datasets that make the pseudo-labeled data bias toward majority
classes. In this paper, we present a simple and yet effective Distribution
Alignment and Random Sampling (DARS) method to produce unbiased pseudo labels
that match the true class distribution estimated from the labeled data.
Besides, we also contribute a progressive data augmentation and labeling
strategy to facilitate model training with pseudo-labeled data. Experiments on
both Cityscapes and PASCAL VOC 2012 datasets demonstrate the effectiveness of
our approach. Albeit simple, our method performs favorably in comparison with
state-of-the-art approaches. Code will be available at
https://github.com/CVMI-Lab/DARS.
- Abstract(参考訳): 自己学習は、半教師付きセマンティクスセグメンテーションが進んだが、実世界のセマンティクスセグメンテーションデータセットの長いクラス分布に苦しめられ、疑似ラベル付きデータの偏りが多数派クラスに向けられている。
本稿では,ラベル付きデータから推定される真のクラス分布と一致する偏りのない擬似ラベルを生成するための,単純かつ効果的な分布アライメントとランダムサンプリング(dars)手法を提案する。
さらに,擬似ラベルデータを用いたモデルトレーニングを容易にするために,プログレッシブデータ拡張とラベル付け戦略も提供する。
Cityscapes と PASCAL VOC 2012 のデータセットによる実験は、我々のアプローチの有効性を実証している。
単純ではあるが,本手法は最先端手法と比較して良好に機能する。
コードはhttps://github.com/CVMI-Lab/DARS.comから入手できる。
関連論文リスト
- Graph-Based Semi-Supervised Segregated Lipschitz Learning [0.21847754147782888]
本稿では,グラフ上のリプシッツ学習を用いたデータ分類のための半教師付き学習手法を提案する。
グラフに基づく半教師付き学習フレームワークを開発し、無限ラプラシアンの性質を利用して、少数のサンプルしかラベル付けされていないデータセットにラベルを伝播する。
論文 参考訳(メタデータ) (2024-11-05T17:16:56Z) - Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
現在の最先端のLTSSLアプローチは、大規模な未ラベルデータに対して高品質な擬似ラベルに依存している。
本稿では,長期学習における様々な提案を統一する新しい確率的枠組みを提案する。
我々は、信頼度とスムーズな擬似ラベルを用いて、我々のフレームワークをラベルなしデータに拡張する、連続的コントラスト学習手法であるCCLを導入する。
論文 参考訳(メタデータ) (2024-10-08T15:06:10Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
この話題は、3次元の点雲のセグメンテーションで広く研究されている。
近年まで、擬似ラベルは、限られた地道ラベルによる訓練を容易にするために広く用いられてきた。
既存の擬似ラベリングアプローチは、重複しないデータのノイズやバリエーションに悩まされる可能性がある。
本研究では,学習用擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭める学習戦略を提案する。
論文 参考訳(メタデータ) (2024-08-29T13:31:15Z) - Manifold DivideMix: A Semi-Supervised Contrastive Learning Framework for
Severe Label Noise [4.90148689564172]
実世界のデータセットには、データセットのどのクラスにも意味のないノイズの多いラベルサンプルが含まれている。
最先端の手法の多くは、IDラベル付きノイズサンプルを半教師付き学習のためのラベルなしデータとして利用する。
自己指導型トレーニングの利点を生かして,すべてのトレーニングデータからの情報を活用することを提案する。
論文 参考訳(メタデータ) (2023-08-13T23:33:33Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - ProtoCon: Pseudo-label Refinement via Online Clustering and Prototypical
Consistency for Efficient Semi-supervised Learning [60.57998388590556]
ProtoConは信頼性に基づく疑似ラベル作成の新しい手法である。
ProtoConのオンライン版では、データセット全体のラベル履歴を1回のトレーニングサイクルで活用することができる。
最先端のデータセットよりも大幅に向上し、より高速に収束する。
論文 参考訳(メタデータ) (2023-03-22T23:51:54Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
本稿では,疑似ラベルの重み付けがモデル性能に悪影響を及ぼすような,不均衡な半教師付き学習に対処する。
本稿では,この観測の動機となるバイアスに対処する,一般的な擬似ラベルフレームワークを提案する。
不均衡SSLのための新しい擬似ラベルフレームワークを、DASO(Distributed-Aware Semantics-Oriented Pseudo-label)と呼ぶ。
論文 参考訳(メタデータ) (2021-06-10T11:58:25Z) - Weakly Supervised Pseudo-Label assisted Learning for ALS Point Cloud
Semantic Segmentation [1.4620086904601473]
競合ポイントクラウドの結果は通常、大量のラベル付きデータに依存します。
本研究では,基礎的事実を限定した正確な結果を得るための擬似ラベル方式を提案する。
論文 参考訳(メタデータ) (2021-05-05T08:07:21Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
ラベルなしまたは弱いラベル付きデータを用いたトレーニングのための構造化された擬似ラベルを生成するための擬似ラベルの再設計を提案する。
提案手法の有効性を,低データと高データの両方において示す。
論文 参考訳(メタデータ) (2020-10-19T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。