論文の概要: Adversarial training may be a double-edged sword
- arxiv url: http://arxiv.org/abs/2107.11671v1
- Date: Sat, 24 Jul 2021 19:09:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-28 03:39:53.307609
- Title: Adversarial training may be a double-edged sword
- Title(参考訳): 敵の訓練は両刃の剣かもしれない
- Authors: Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Huaiyu Dai
- Abstract要約: 深層ネットワークの決定境界における敵対的トレーニングの幾らかの幾何学的結果が、ある種のブラックボックス攻撃のエッジとなることを示す。
特に、敵の訓練がホワイトボックスシナリオのロバスト性を大幅に改善する効果的な方法であることを示すために、ロバストネスゲインと呼ばれる指標を定義するが、より現実的な意思決定ベースのブラックボックス攻撃に対して、そのようなロバストネスゲインを提供することはできない。
- 参考スコア(独自算出の注目度): 50.09831237090801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training has been shown as an effective approach to improve the
robustness of image classifiers against white-box attacks. However, its
effectiveness against black-box attacks is more nuanced. In this work, we
demonstrate that some geometric consequences of adversarial training on the
decision boundary of deep networks give an edge to certain types of black-box
attacks. In particular, we define a metric called robustness gain to show that
while adversarial training is an effective method to dramatically improve the
robustness in white-box scenarios, it may not provide such a good robustness
gain against the more realistic decision-based black-box attacks. Moreover, we
show that even the minimal perturbation white-box attacks can converge faster
against adversarially-trained neural networks compared to the regular ones.
- Abstract(参考訳): 敵対的トレーニングは、ホワイトボックス攻撃に対する画像分類器のロバスト性を改善する効果的なアプローチとして示されている。
しかし、ブラックボックス攻撃に対する効果はより曖昧である。
本研究では,ディープネットワークにおける決定境界に対する敵意学習の幾何的影響が,特定のブラックボックス攻撃に対するエッジを与えることを示す。
特に,ホワイトボックスのシナリオにおけるロバストネスを劇的に改善するための効果的な方法である一方で,より現実的な意思決定ベースのブラックボックス攻撃に対するロバストネスゲインを提供するものではないことを示すために,ロバストネスゲインと呼ばれる指標を定義した。
さらに,最小限の摂動型ホワイトボックス攻撃でさえ,通常の攻撃と比較して,敵に訓練されたニューラルネットワークに対してより早く収束できることを示す。
関連論文リスト
- Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Saliency Attack: Towards Imperceptible Black-box Adversarial Attack [35.897117965803666]
そこで本稿では, ほとんど認識できない敵の例を生成するために, 摂動を小さな正弦領域に限定することを提案する。
我々はまた、より優れた非受容性を達成するために、サリアント地域の摂動を改善すべく、新しいブラックボックス攻撃であるサリアンシーアタックを提案する。
論文 参考訳(メタデータ) (2022-06-04T03:56:07Z) - Boosting Black-Box Adversarial Attacks with Meta Learning [0.0]
本稿では,代用モデル上でメタ対向摂動(MAP)を訓練し,モデルの勾配を推定してブラックボックス攻撃を行うハイブリッドアタック手法を提案する。
本手法は攻撃成功率を向上するだけでなく,他の手法と比較してクエリ数を減少させる。
論文 参考訳(メタデータ) (2022-03-28T09:32:48Z) - Parallel Rectangle Flip Attack: A Query-based Black-box Attack against
Object Detection [89.08832589750003]
本稿では,攻撃領域近傍の準最適検出を回避するために,ランダム探索による並列矩形フリップ攻撃(PRFA)を提案する。
提案手法は, アンカーベースやアンカーフリーなど, 様々な人気物体検出装置を効果的かつ効率的に攻撃し, 転送可能な対向例を生成する。
論文 参考訳(メタデータ) (2022-01-22T06:00:17Z) - Saliency Diversified Deep Ensemble for Robustness to Adversaries [1.9659095632676094]
本研究は,深層アンサンブルのための新しい多様性促進学習手法を提案する。
この考え方は、アンサンブルのメンバーが一度にすべてのアンサンブルメンバーを標的にしないよう、サリエンシマップの多様性(SMD)を促進することである。
アンサンブル構成員間の移動性が低下し,最先端のアンサンブル防御よりも性能が向上したことを実証的に示す。
論文 参考訳(メタデータ) (2021-12-07T10:18:43Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - Robustness Out of the Box: Compositional Representations Naturally
Defend Against Black-Box Patch Attacks [11.429509031463892]
パッチベースの敵攻撃は、誤分類を引き起こす入力に知覚できるが局所的な変化をもたらす。
本研究では,ブラックボックスパッチ攻撃に対する2つの対策について検討する。
敵の訓練は、最先端の位置最適化パッチ攻撃に対する効果が限られていることが判明した。
論文 参考訳(メタデータ) (2020-12-01T15:04:23Z) - AdvMind: Inferring Adversary Intent of Black-Box Attacks [66.19339307119232]
本稿では,ブラックボックス攻撃の敵意を頑健に推定する新たな評価モデルであるAdvMindを提案する。
平均的なAdvMindは、3回未満のクエリバッチを観察した後、75%以上の精度で敵の意図を検出する。
論文 参考訳(メタデータ) (2020-06-16T22:04:31Z) - Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data [96.92837098305898]
Black-box攻撃は、機械学習モデルのインプット・アウトプットペアをクエリすることで、敵の摂動を発生させることを目的としている。
ブラックボックス攻撃はしばしば、入力空間の高次元性のためにクエリ非効率性の問題に悩まされる。
本研究では,低次元部分空間における逆摂動を,補助的なラベルのないデータセットに分散させることで抑制するスパンニング攻撃と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-05-11T05:57:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。