論文の概要: Boosting Black-Box Adversarial Attacks with Meta Learning
- arxiv url: http://arxiv.org/abs/2203.14607v1
- Date: Mon, 28 Mar 2022 09:32:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-29 14:15:01.267411
- Title: Boosting Black-Box Adversarial Attacks with Meta Learning
- Title(参考訳): メタ学習によるブラックボックス攻撃の強化
- Authors: Junjie Fu (1 and 2), Jian Sun (1 and 2), Gang Wang (1 and 2) ((1) the
State Key Lab of Intelligent Control and Decision of Complex Systems and the
School of Automation, Beijing Institute of Technology, Beijing, China, (2)
Beijing Institute of Technology Chongqing Innovation Center, Chongqing,
China)
- Abstract要約: 本稿では,代用モデル上でメタ対向摂動(MAP)を訓練し,モデルの勾配を推定してブラックボックス攻撃を行うハイブリッドアタック手法を提案する。
本手法は攻撃成功率を向上するだけでなく,他の手法と比較してクエリ数を減少させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have achieved remarkable success in diverse
fields. However, it has been demonstrated that DNNs are very vulnerable to
adversarial examples even in black-box settings. A large number of black-box
attack methods have been proposed to in the literature. However, those methods
usually suffer from low success rates and large query counts, which cannot
fully satisfy practical purposes. In this paper, we propose a hybrid attack
method which trains meta adversarial perturbations (MAPs) on surrogate models
and performs black-box attacks by estimating gradients of the models. Our
method uses the meta adversarial perturbation as an initialization and
subsequently trains any black-box attack method for several epochs.
Furthermore, the MAPs enjoy favorable transferability and universality, in the
sense that they can be employed to boost performance of other black-box
adversarial attack methods. Extensive experiments demonstrate that our method
can not only improve the attack success rates, but also reduces the number of
queries compared to other methods.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は様々な分野で大きな成功を収めている。
しかしながら、DNNはブラックボックスの設定であっても敵の例に対して非常に脆弱であることが示されている。
多くのブラックボックス攻撃手法が文献に提案されている。
しかし、これらの手法は通常、実際の目的を完全に満たすことができない、低い成功率と大きなクエリ数に苦しむ。
本稿では,サロゲートモデル上でのメタ逆摂動(maps)を訓練し,モデルの勾配を推定してブラックボックス攻撃を行うハイブリッド攻撃手法を提案する。
本手法は,初期化にメタ逆摂動を用い,その後,ブラックボックス攻撃を複数回訓練する。
さらに、MAPは、他のブラックボックス対敵攻撃法の性能を高めるために使用できるという意味で、良好な転送性と普遍性を享受する。
広範な実験により,本手法は攻撃成功率を向上させるだけでなく,他の手法と比較してクエリ数を削減できることを示した。
関連論文リスト
- Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
ブラックボックスの敵攻撃は、行動認識システムに現実的な脅威をもたらす。
本稿では,摂動を発生させることにより,これらの欠点に対処する新たな行動認識攻撃を提案する。
提案手法は,最先端のクエリベースおよび転送ベース攻撃と比較して,8%,12%の偽装率を達成する。
論文 参考訳(メタデータ) (2022-11-23T17:47:49Z) - Saliency Attack: Towards Imperceptible Black-box Adversarial Attack [35.897117965803666]
そこで本稿では, ほとんど認識できない敵の例を生成するために, 摂動を小さな正弦領域に限定することを提案する。
我々はまた、より優れた非受容性を達成するために、サリアント地域の摂動を改善すべく、新しいブラックボックス攻撃であるサリアンシーアタックを提案する。
論文 参考訳(メタデータ) (2022-06-04T03:56:07Z) - Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based
Prior [50.393092185611536]
対象モデルの勾配にアクセスできることなく、敵が敵の例を作らなければならないブラックボックスの敵設定を考える。
従来の手法では、代用ホワイトボックスモデルの転送勾配を用いたり、モデルクエリのフィードバックに基づいて真の勾配を近似しようとした。
偏りサンプリングと勾配平均化に基づく2つの事前誘導型ランダム勾配フリー(PRGF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-13T04:06:27Z) - Art-Attack: Black-Box Adversarial Attack via Evolutionary Art [5.760976250387322]
ディープニューラルネットワーク(DNN)は多くのタスクで最先端のパフォーマンスを達成したが、敵の例によって生成された攻撃に対して極端な脆弱性を示している。
本稿では, 進化芸術の概念を用いて, 敵対的事例を生成することによって, 勾配のない攻撃を提案する。
論文 参考訳(メタデータ) (2022-03-07T12:54:09Z) - Meta Gradient Adversarial Attack [64.5070788261061]
本稿では,MGAA(Metaversa Gradient Adrial Attack)と呼ばれる新しいアーキテクチャを提案する。
具体的には、モデル動物園から複数のモデルをランダムにサンプリングし、異なるタスクを構成するとともに、各タスクにおけるホワイトボックス攻撃とブラックボックス攻撃を反復的にシミュレートする。
ブラックボックス攻撃における勾配方向とブラックボックス攻撃の差を狭めることにより、ブラックボックス設定における逆例の転送性を向上させることができる。
論文 参考訳(メタデータ) (2021-08-09T17:44:19Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data [96.92837098305898]
Black-box攻撃は、機械学習モデルのインプット・アウトプットペアをクエリすることで、敵の摂動を発生させることを目的としている。
ブラックボックス攻撃はしばしば、入力空間の高次元性のためにクエリ非効率性の問題に悩まされる。
本研究では,低次元部分空間における逆摂動を,補助的なラベルのないデータセットに分散させることで抑制するスパンニング攻撃と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-05-11T05:57:15Z) - Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent [92.4348499398224]
ブラックボックスの敵攻撃手法は、実用性や単純さから特に注目されている。
敵攻撃を設計するためのゼロ階自然勾配降下法(ZO-NGD)を提案する。
ZO-NGDは、最先端攻撃法と比較して、モデルクエリの複雑さが大幅に低い。
論文 参考訳(メタデータ) (2020-02-18T21:48:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。