論文の概要: Graph Representation Learning on Tissue-Specific Multi-Omics
- arxiv url: http://arxiv.org/abs/2107.11856v1
- Date: Sun, 25 Jul 2021 17:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-28 00:30:22.899019
- Title: Graph Representation Learning on Tissue-Specific Multi-Omics
- Title(参考訳): 組織特異的マルチオミクスによるグラフ表現学習
- Authors: Amine Amor (1), Pietro Lio' (1), Vikash Singh (1), Ramon Vi\~nas
Torn\'e (1), Helena Andres Terre (1)
- Abstract要約: 組織特異的遺伝子間相互作用(GGI)ネットワーク上でリンク予測を行うために,グラフ埋め込みモデル(すなわちVGAE)を利用する。
複数生物のモダリティ(マルチオミクス)の組み合わせは、強力な埋め込みとより良いリンク予測性能をもたらすことを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining different modalities of data from human tissues has been critical
in advancing biomedical research and personalised medical care. In this study,
we leverage a graph embedding model (i.e VGAE) to perform link prediction on
tissue-specific Gene-Gene Interaction (GGI) networks. Through ablation
experiments, we prove that the combination of multiple biological modalities
(i.e multi-omics) leads to powerful embeddings and better link prediction
performances. Our evaluation shows that the integration of gene methylation
profiles and RNA-sequencing data significantly improves the link prediction
performance. Overall, the combination of RNA-sequencing and gene methylation
data leads to a link prediction accuracy of 71% on GGI networks. By harnessing
graph representation learning on multi-omics data, our work brings novel
insights to the current literature on multi-omics integration in
bioinformatics.
- Abstract(参考訳): 生体医学研究とパーソナライズド医療の推進に、ヒト組織からのさまざまなデータモダリティを組み合わせることが重要である。
本研究では,組織特異的遺伝子間相互作用(ggi)ネットワーク上でのリンク予測を行うために,グラフ埋め込みモデル(vgae)を利用する。
アブレーション実験により,複数の生物学的モダリティ(すなわちマルチオミクス)の組み合わせが強力な埋め込みとより良いリンク予測性能をもたらすことを証明した。
遺伝子メチル化プロファイルとrnaシークエンシングデータの統合によりリンク予測性能が著しく向上することを示す。
RNAシークエンシングと遺伝子メチル化のデータの組み合わせにより、GGIネットワーク上でのリンク予測精度は71%になる。
マルチオミクスデータを用いたグラフ表現学習を活用し,バイオインフォマティクスにおけるマルチオミクス統合に関する最近の文献に新たな知見を与える。
関連論文リスト
- Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
マルチオミクスデータ統合は、高次元性、データ複雑さ、および様々なオミクスタイプの異なる特徴により、大きな課題を生じさせる。
本研究では、グラフ畳み込みネットワーク(GCN)、グラフアテンションネットワーク(GAT)、グラフトランスフォーマーネットワーク(GTN)に基づくマルチオミクス(MO)統合のための3つのグラフニューラルネットワークアーキテクチャを評価する。
論文 参考訳(メタデータ) (2024-10-05T16:17:44Z) - BioBERT-based Deep Learning and Merged ChemProt-DrugProt for Enhanced Biomedical Relation Extraction [2.524192238862961]
我々のアプローチは、新しいマージ戦略を用いて、ChemProtとD薬局のデータセットを統合する。
本研究は, バイオメディカル研究と臨床実習における自動情報抽出の可能性を強調した。
論文 参考訳(メタデータ) (2024-05-28T21:34:01Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
本稿では,癌分子サブタイプとバイオメディカル分類のための新しい統合ニューラルネットワークアプローチを提案する。
IGCNは、特定のクラスを予測するために患者に対してどのタイプのオミクスがより強調されるかを特定することができる。
IGCNは、様々なオミクスデータタイプから重要なバイオマーカーを特定できる。
論文 参考訳(メタデータ) (2024-01-31T05:52:11Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
マルチモーダル類似性学習グラフニューラルネットワークという新しいモデルを提案する。
マルチモーダル機械学習とディープグラフニューラルネットワークを組み合わせて、単一セルシークエンシングと空間転写データから遺伝子発現を学習する。
本モデルでは, 遺伝子機能, 組織機能, 疾患, 種進化の解析のために, 統合された遺伝子表現を効率よく生成する。
論文 参考訳(メタデータ) (2023-09-29T13:33:53Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph Neural Networks for Microbial Genome Recovery [64.91162205624848]
本稿では,グラフニューラルネットワーク(GNN)を用いて,メダゲノミクスビニングのためのコンティグ表現を学習する際のアセンブリグラフを活用することを提案する。
提案手法であるVaeG-Binは,個々のコンティグの潜在表現を学習するための変分オートエンコーダと,アセンブリグラフ内のコンティグの近傍構造を考慮したGNNを組み合わせる。
論文 参考訳(メタデータ) (2022-04-26T12:49:51Z) - Predicting Biomedical Interactions with Higher-Order Graph Convolutional
Networks [2.9488233765621295]
本稿では,生物医学的相互作用予測のための高次グラフ畳み込みネットワーク(HOGCN)を提案する。
タンパク質-タンパク質、薬物-ドラッグ、薬物-ターゲット、遺伝子-放出相互作用を含む4つの相互作用ネットワークの実験は、HOGCNがより正確で校正された予測を達成していることを示している。
論文 参考訳(メタデータ) (2020-10-16T17:16:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。