論文の概要: Exploiting Language Model for Efficient Linguistic Steganalysis: An
Empirical Study
- arxiv url: http://arxiv.org/abs/2107.12168v1
- Date: Mon, 26 Jul 2021 12:37:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-27 15:59:38.745641
- Title: Exploiting Language Model for Efficient Linguistic Steganalysis: An
Empirical Study
- Title(参考訳): 言語ステグアナリシスにおける言語モデルの利用 : 実証的研究
- Authors: Biao Yi, Hanzhou Wu, Guorui Feng and Xinpeng Zhang
- Abstract要約: 言語ステガナリシスを効果的に行うための2つの方法を提案する。
1つはRNNに基づく言語モデルの事前トレーニングであり、もう1つはシーケンスオートエンコーダの事前トレーニングである。
- 参考スコア(独自算出の注目度): 23.311007481830647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in linguistic steganalysis have successively applied CNNs,
RNNs, GNNs and other deep learning models for detecting secret information in
generative texts. These methods tend to seek stronger feature extractors to
achieve higher steganalysis effects. However, we have found through experiments
that there actually exists significant difference between automatically
generated steganographic texts and carrier texts in terms of the conditional
probability distribution of individual words. Such kind of statistical
difference can be naturally captured by the language model used for generating
steganographic texts, which drives us to give the classifier a priori knowledge
of the language model to enhance the steganalysis ability. To this end, we
present two methods to efficient linguistic steganalysis in this paper. One is
to pre-train a language model based on RNN, and the other is to pre-train a
sequence autoencoder. Experimental results show that the two methods have
different degrees of performance improvement when compared to the randomly
initialized RNN classifier, and the convergence speed is significantly
accelerated. Moreover, our methods have achieved the best detection results.
- Abstract(参考訳): 近年,CNN,RNN,GNN,その他の深層学習モデルを用いて,生成テキストにおける秘密情報の検出を行っている。
これらの方法は、ステガナリシス効果を高めるために、より強力な特徴抽出器を求める傾向がある。
しかし,各単語の条件付き確率分布の観点から,自動生成したステガノグラフィーテキストと担い手テキストとの間に有意な差異があることを実験により見出した。
このような統計的な違いは、ステガノグラフィーのテキストを生成するのに使われる言語モデルによって自然に捉えられ、分類器にステグアナライザ能力を高めるために言語モデルの事前知識を与える。
そこで本研究では,効率的な言語格解析を行うための2つの方法を提案する。
1つはRNNに基づく言語モデルの事前トレーニングであり、もう1つはシーケンスオートエンコーダの事前トレーニングである。
実験結果から, ランダム初期化RNN分類器と比較すると, 2つの手法は性能改善の度合いが異なることが明らかとなり, 収束速度は著しく向上した。
さらに,本手法は最高の検出結果を得た。
関連論文リスト
- Towards Next-Generation Steganalysis: LLMs Unleash the Power of Detecting Steganography [18.7168443402118]
言語ステガノグラフィーは、特にAI生成技術の出現と共に、メッセージを隠蔽するための便利な実装を提供する。
既存の手法は、記号統計学の側面から、ステガノグラフテキストと正規テキストの分布差を見つけることに限定されている。
本稿では,大規模言語モデル(LLM)のヒューマンライクなテキスト処理機能を用いて,人間の知覚との違いを実現することを提案する。
論文 参考訳(メタデータ) (2024-05-15T04:52:09Z) - Transparency at the Source: Evaluating and Interpreting Language Models
With Access to the True Distribution [4.01799362940916]
人工的な言語のようなデータを用いて、ニューラルネットワークモデルのトレーニング、評価、解釈を行う。
データは、巨大な自然言語コーパスから派生した巨大な確率文法を用いて生成される。
基礎となる真の情報源にアクセスすることで、異なる単語のクラス間の動的学習における顕著な違いと結果が示される。
論文 参考訳(メタデータ) (2023-10-23T12:03:01Z) - SLCNN: Sentence-Level Convolutional Neural Network for Text
Classification [0.0]
畳み込みニューラルネットワーク(CNN)は,テキスト分類のタスクにおいて顕著な成功を収めている。
CNNを用いたテキスト分類のための新しいベースラインモデルが研究されている。
結果から,提案したモデルの性能は,特に長いドキュメントにおいて向上していることがわかった。
論文 参考訳(メタデータ) (2023-01-27T13:16:02Z) - Multi-Scales Data Augmentation Approach In Natural Language Inference
For Artifacts Mitigation And Pre-Trained Model Optimization [0.0]
クラウドソーシングされたStanford Natural Language Inference corpus内でデータセットのアーティファクトを分析し、配置するための様々な技術を提供する。
データセットアーティファクトを緩和するために、2つの異なるフレームワークで独自のマルチスケールデータ拡張技術を採用している。
本手法は, 摂動試験に対するモデルの抵抗性を向上し, トレーニング済みベースラインの連続的な性能向上を可能にする。
論文 参考訳(メタデータ) (2022-12-16T23:37:44Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
クラスベース言語モデル (LM) は、コンテキストの疎結合に$n$-gramのLMで対処するために長年開発されてきた。
本研究では,このアプローチをニューラルLMの文脈で再考する。
論文 参考訳(メタデータ) (2022-03-21T01:16:44Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
空白および語彙予測を分解し,ニューラルトランスデューサの因子化モデルを提案する。
この因子化は、音声認識のためのトランスデューサにスタンドアロン言語モデルの改善を移すことが期待できる。
提案した因子化ニューラルトランスデューサは、言語モデル適応にドメイン外テキストデータを使用する場合、15%から20%のWER改善が得られることを示す。
論文 参考訳(メタデータ) (2021-09-27T15:04:00Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。