Probing neural networks with t-SNE, class-specific projections and a
guided tour
- URL: http://arxiv.org/abs/2107.12547v1
- Date: Tue, 27 Jul 2021 01:42:07 GMT
- Title: Probing neural networks with t-SNE, class-specific projections and a
guided tour
- Authors: Christopher R. Hoyt and Art B. Owen
- Abstract summary: Plots of t-SNE outputs at successive layers in a network reveal increasingly organized arrangement of the data points.
We use class-specific analogues of principal components to visualize how succeeding layers separate the classes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use graphical methods to probe neural nets that classify images. Plots of
t-SNE outputs at successive layers in a network reveal increasingly organized
arrangement of the data points. They can also reveal how a network can diminish
or even forget about within-class structure as the data proceeds through
layers. We use class-specific analogues of principal components to visualize
how succeeding layers separate the classes. These allow us to sort images from
a given class from most typical to least typical (in the data) and they also
serve as very useful projection coordinates for data visualization. We find
them especially useful when defining versions guided tours for animated data
visualization.
Related papers
- Histogram Layers for Neural Engineered Features [1.3963768610574674]
Local binary patterns and edge histogram descriptors have been shown to be informative features for a variety of computer vision tasks.
In this paper, we explore whether these features can be learned through histogram layers embedded in a neural network.
We present neural versions of local binary pattern and edge histogram descriptors that jointly improve the feature representation and perform image classification.
arXiv Detail & Related papers (2024-03-25T20:43:48Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
We present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images.
We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images.
CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.
arXiv Detail & Related papers (2023-05-01T23:11:18Z) - Extracting Semantic Knowledge from GANs with Unsupervised Learning [65.32631025780631]
Generative Adversarial Networks (GANs) encode semantics in feature maps in a linearly separable form.
We propose a novel clustering algorithm, named KLiSH, which leverages the linear separability to cluster GAN's features.
KLiSH succeeds in extracting fine-grained semantics of GANs trained on datasets of various objects.
arXiv Detail & Related papers (2022-11-30T03:18:16Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - VisGraphNet: a complex network interpretation of convolutional neural
features [6.50413414010073]
We propose and investigate the use of visibility graphs to model the feature map of a neural network.
The work is motivated by an alternative viewpoint provided by these graphs over the original data.
arXiv Detail & Related papers (2021-08-27T20:21:04Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
In this work, we propose a classifier ensemble based on the transferable learning capabilities of the CLIP neural network architecture.
Our experiments, based on image classification tasks according to the labels of the Places dataset, are performed by first considering only the visual part.
Considering the associated texts to the images can help to improve the accuracy depending on the goal.
arXiv Detail & Related papers (2021-07-08T10:54:59Z) - Representation Learning of Reconstructed Graphs Using Random Walk Graph
Convolutional Network [12.008472517000651]
We propose wGCN -- a novel framework that utilizes random walk to obtain the node-specific mesoscopic structures of the graph.
We believe that combining high-order local structural information can more efficiently explore the potential of the network.
arXiv Detail & Related papers (2021-01-02T10:31:14Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.