A persistent homology-based topological loss function for multi-class
CNN segmentation of cardiac MRI
- URL: http://arxiv.org/abs/2008.09585v1
- Date: Fri, 21 Aug 2020 17:09:13 GMT
- Title: A persistent homology-based topological loss function for multi-class
CNN segmentation of cardiac MRI
- Authors: Nick Byrne, James R. Clough, Giovanni Montana, Andrew P. King
- Abstract summary: We build a richer description of segmentation topology by considering all possible labels and label pairs.
These topological priors allow us to resolve all topological errors in a subset of 150 examples from the ACDC short axis CMR training data set.
- Score: 7.993897173085253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With respect to spatial overlap, CNN-based segmentation of short axis
cardiovascular magnetic resonance (CMR) images has achieved a level of
performance consistent with inter observer variation. However, conventional
training procedures frequently depend on pixel-wise loss functions, limiting
optimisation with respect to extended or global features. As a result, inferred
segmentations can lack spatial coherence, including spurious connected
components or holes. Such results are implausible, violating the anticipated
topology of image segments, which is frequently known a priori. Addressing this
challenge, published work has employed persistent homology, constructing
topological loss functions for the evaluation of image segments against an
explicit prior. Building a richer description of segmentation topology by
considering all possible labels and label pairs, we extend these losses to the
task of multi-class segmentation. These topological priors allow us to resolve
all topological errors in a subset of 150 examples from the ACDC short axis CMR
training data set, without sacrificing overlap performance.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation [1.4680035572775534]
We introduce a new topology-aware loss function, which explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps.
We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss.
The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
arXiv Detail & Related papers (2024-08-15T09:06:49Z) - Direct Cardiac Segmentation from Undersampled K-space Using Transformers [10.079819435628579]
We introduce a novel approach to deriving segmentations from sparse k-space samples using a transformer (DiSK)
Our model consistently outperforms the baselines in Dice and Hausdorff distances across foreground classes for all presented sampling rates.
arXiv Detail & Related papers (2024-05-31T20:54:12Z) - Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
We propose a general loss function for topologically faithful multi-class segmentation.
We project the N-class segmentation problem to N single-class segmentation tasks.
Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
arXiv Detail & Related papers (2024-03-16T19:11:57Z) - Topology-Aware Focal Loss for 3D Image Segmentation [0.0]
We introduce a novel loss function, namely Topology-Aware Focal Loss (TAFL), that incorporates the conventional Focal Loss with a topological constraint term.
We evaluate our approach by training a 3D U-Net with the MICCAI Brain Tumor (BraTS) challenge validation dataset.
arXiv Detail & Related papers (2023-04-24T16:07:17Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
We present a new semi-supervised segmentation model, namely, conservative-radical network (CoraNet) based on our uncertainty estimation and separate self-training strategy.
Compared with the current state of the art, our CoraNet has demonstrated superior performance.
arXiv Detail & Related papers (2021-10-17T08:49:33Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR [5.898114915426535]
Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration.
Most popular CNN-based methods are optimised using pixel wise loss functions, ignorant of the spatially extended features that characterise anatomy.
We extend these approaches to the task of multi-class segmentation by building an enriched topological description of all class labels and class label pairs.
arXiv Detail & Related papers (2021-07-27T09:21:38Z) - Adaptive feature recombination and recalibration for semantic
segmentation with Fully Convolutional Networks [57.64866581615309]
We propose recombination of features and a spatially adaptive recalibration block that is adapted for semantic segmentation with Fully Convolutional Networks.
Results indicate that Recombination and Recalibration improve the results of a competitive baseline, and generalize across three different problems.
arXiv Detail & Related papers (2020-06-19T15:45:03Z) - Residual-driven Fuzzy C-Means Clustering for Image Segmentation [152.609322951917]
We elaborate on residual-driven Fuzzy C-Means (FCM) for image segmentation.
Built on this framework, we present a weighted $ell_2$-norm fidelity term by weighting mixed noise distribution.
The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over existing FCM-related algorithms.
arXiv Detail & Related papers (2020-04-15T15:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.