Topologically Faithful Multi-class Segmentation in Medical Images
- URL: http://arxiv.org/abs/2403.11001v2
- Date: Wed, 09 Oct 2024 17:44:14 GMT
- Title: Topologically Faithful Multi-class Segmentation in Medical Images
- Authors: Alexander H. Berger, Nico Stucki, Laurin Lux, Vincent Buergin, Suprosanna Shit, Anna Banaszak, Daniel Rueckert, Ulrich Bauer, Johannes C. Paetzold,
- Abstract summary: We propose a general loss function for topologically faithful multi-class segmentation.
We project the N-class segmentation problem to N single-class segmentation tasks.
Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
- Score: 43.6770098513581
- License:
- Abstract: Topological accuracy in medical image segmentation is a highly important property for downstream applications such as network analysis and flow modeling in vessels or cell counting. Recently, significant methodological advancements have brought well-founded concepts from algebraic topology to binary segmentation. However, these approaches have been underexplored in multi-class segmentation scenarios, where topological errors are common. We propose a general loss function for topologically faithful multi-class segmentation extending the recent Betti matching concept, which is based on induced matchings of persistence barcodes. We project the N-class segmentation problem to N single-class segmentation tasks, which allows us to use 1-parameter persistent homology, making training of neural networks computationally feasible. We validate our method on a comprehensive set of four medical datasets with highly variant topological characteristics. Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Universal Topology Refinement for Medical Image Segmentation with Polynomial Feature Synthesis [19.2371330932614]
Medical image segmentation methods often neglect topological correctness, making their segmentations unusable for many downstream tasks.
One option is to retrain such models whilst including a topology-driven loss component.
We present a plug-and-play topology refinement method that is compatible with any domain-specific segmentation pipeline.
arXiv Detail & Related papers (2024-09-15T17:07:58Z) - TA-Net: Topology-Aware Network for Gland Segmentation [71.52681611057271]
We propose a novel topology-aware network (TA-Net) to accurately separate densely clustered and severely deformed glands.
TA-Net has a multitask learning architecture and enhances the generalization of gland segmentation.
It achieves state-of-the-art performance on the two datasets.
arXiv Detail & Related papers (2021-10-27T17:10:58Z) - Topological Similarity Index and Loss Function for Blood Vessel
Segmentation [0.0]
We propose a similarity index which captures the consistency of the predicted segmentations having as reference the ground truth.
We also design a novel loss function based on the morphological closing operator and show how it allows to learn deep neural network models which produce more topologically coherent masks.
arXiv Detail & Related papers (2021-07-30T10:24:47Z) - A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR [5.898114915426535]
Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration.
Most popular CNN-based methods are optimised using pixel wise loss functions, ignorant of the spatially extended features that characterise anatomy.
We extend these approaches to the task of multi-class segmentation by building an enriched topological description of all class labels and class label pairs.
arXiv Detail & Related papers (2021-07-27T09:21:38Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
We propose a new approach to train deep image segmentation networks for better topological accuracy.
We identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy.
On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
arXiv Detail & Related papers (2021-03-18T02:47:21Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - A persistent homology-based topological loss function for multi-class
CNN segmentation of cardiac MRI [7.993897173085253]
We build a richer description of segmentation topology by considering all possible labels and label pairs.
These topological priors allow us to resolve all topological errors in a subset of 150 examples from the ACDC short axis CMR training data set.
arXiv Detail & Related papers (2020-08-21T17:09:13Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.