Physics-constrained Deep Learning for Robust Inverse ECG Modeling
- URL: http://arxiv.org/abs/2107.12780v1
- Date: Mon, 26 Jul 2021 01:30:41 GMT
- Title: Physics-constrained Deep Learning for Robust Inverse ECG Modeling
- Authors: Jianxin Xie, Bing Yao
- Abstract summary: This paper presents a physics-constrained deep learning (P-DL) framework for high-dimensional inverse ECG modeling.
The proposed P-DL approach is implemented to solve the inverse ECG model and predict the time-varying distribution of electric potentials in the heart.
- Score: 0.913755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid developments in advanced sensing and imaging bring about a
data-rich environment, facilitating the effective modeling, monitoring, and
control of complex systems. For example, the body-sensor network captures
multi-channel information pertinent to the electrical activity of the heart
(i.e., electrocardiograms (ECG)), which enables medical scientists to monitor
and detect abnormal cardiac conditions. However, the high-dimensional sensing
data are generally complexly structured and realizing the full data potential
depends to a great extent on advanced analytical and predictive methods. This
paper presents a physics-constrained deep learning (P-DL) framework for
high-dimensional inverse ECG modeling. This method integrates the physical laws
of the complex system with the advanced deep learning infrastructure for
effective prediction of the system dynamics. The proposed P-DL approach is
implemented to solve the inverse ECG model and predict the time-varying
distribution of electric potentials in the heart from the ECG data measured by
the body-surface sensor network. Experimental results show that the proposed
P-DL method significantly outperforms existing methods that are commonly used
in current practice.
Related papers
- Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey [6.1689808850463335]
Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms.
Recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference.
This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives.
arXiv Detail & Related papers (2024-06-17T11:57:14Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Transforming ECG Diagnosis:An In-depth Review of Transformer-based
DeepLearning Models in Cardiovascular Disease Detection [0.0]
We present an in-depth review of transformer architectures that are applied to ECG classification.
These models capture complex temporal relationships in ECG signals that other models might overlook.
This review serves as a valuable resource for researchers and practitioners and aims to shed light on this innovative application in ECG interpretation.
arXiv Detail & Related papers (2023-06-02T03:23:16Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
This paper proposes a deep learning model for real-time segmentation of heartbeats.
The proposed algorithm, named as the DENS-ECG algorithm, combines convolutional neural network (CNN) and long short-term memory (LSTM) model.
arXiv Detail & Related papers (2020-05-18T13:13:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.