論文の概要: Continuation Newton methods with deflation techniques and quasi-genetic
evolution for global optimization problems
- arxiv url: http://arxiv.org/abs/2107.13864v5
- Date: Mon, 10 Oct 2022 08:15:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 11:48:18.419771
- Title: Continuation Newton methods with deflation techniques and quasi-genetic
evolution for global optimization problems
- Title(参考訳): 大域最適化問題に対するデフレ手法と準遺伝的進化を用いた連続ニュートン法
- Authors: Xin-long Luo, Hang Xiao and Sen Zhang
- Abstract要約: 本稿では,非線形大規模最適化問題に対する新しいメメティックアルゴリズムについて考察する。
我々の数値実験によると、新しいアルゴリズムは制約のない未制約問題に対してうまく機能する。
- 参考スコア(独自算出の注目度): 1.0478712332545854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global minimum point of an optimization problem is of interest in
engineering fields and it is difficult to be solved, especially for a nonconvex
large-scale optimization problem. In this article, we consider a new memetic
algorithm for this problem. That is to say, we use the continuation Newton
method with the deflation technique to find multiple stationary points of the
objective function and use those found stationary points as the initial seeds
of the evolutionary algorithm, other than the random initial seeds of the known
evolutionary algorithms. Meanwhile, in order to retain the usability of the
derivative-free method and the fast convergence of the gradient-based method,
we use the automatic differentiation technique to compute the gradient and
replace the Hessian matrix with its finite difference approximation. According
to our numerical experiments, this new algorithm works well for unconstrained
optimization problems and finds their global minima efficiently, in comparison
to the other representative global optimization methods such as the multi-start
methods (the built-in subroutine GlobalSearch.m of MATLAB R2021b, GLODS and
VRBBO), the branch-and-bound method (Couenne, a state-of-the-art open-source
solver for mixed integer nonlinear programming problems), and the
derivative-free algorithms (CMA-ES and MCS).
- Abstract(参考訳): 最適化問題のグローバル最小点が工学分野に興味を持ち、特に凸でない大規模最適化問題では解決が困難である。
本稿では,この問題に対する新しいmemeticアルゴリズムについて考察する。
つまり、継続ニュートン法(continuation newton method)とデフレ法(deflation technique)を用いて目的関数の複数の定常点を見つけ出し、それらの定常点を既知の進化アルゴリズムのランダム初期種以外の進化アルゴリズムの初期種として用いる。
一方,微分自由法のユーザビリティと勾配に基づく高速収束を維持するために,自動微分法を用いて勾配を計算し,有限差分近似によりヘッセン行列を置換する。
According to our numerical experiments, this new algorithm works well for unconstrained optimization problems and finds their global minima efficiently, in comparison to the other representative global optimization methods such as the multi-start methods (the built-in subroutine GlobalSearch.m of MATLAB R2021b, GLODS and VRBBO), the branch-and-bound method (Couenne, a state-of-the-art open-source solver for mixed integer nonlinear programming problems), and the derivative-free algorithms (CMA-ES and MCS).
関連論文リスト
- Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
本稿では,着陸アルゴリズムの実用化と理論的展開について述べる。
まず、この方法はスティーフェル多様体に拡張される。
また、コスト関数が多くの関数の平均である場合の分散還元アルゴリズムについても検討する。
論文 参考訳(メタデータ) (2023-03-29T07:36:54Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
アルゴリズムの主要な構成要素は、目的関数の値に基づくランダム性である。
アルゴリズムの収束を代数学で証明し、パラメータ空間でチューニングする。
アルゴリズムの効率性とロバスト性を示す数値的な例をいくつか提示する。
論文 参考訳(メタデータ) (2022-04-12T16:27:49Z) - A framework for bilevel optimization that enables stochastic and global
variance reduction algorithms [17.12280360174073]
双レベル最適化は、他の関数のarg最小値を含む値関数を最小化する問題である。
本稿では, 内部問題の解, 線形系の解, 主変数を同時に発展させる新しい枠組みを提案する。
我々のフレームワークにおけるSAGAアルゴリズムの適応であるSABAは$O(frac1T)$収束率を持ち、Polyak-Lojasciewicz仮定の下で線形収束を達成することを示した。
論文 参考訳(メタデータ) (2022-01-31T18:17:25Z) - A Granular Sieving Algorithm for Deterministic Global Optimization [6.01919376499018]
リプシッツ連続関数に対する大域的最適化問題を解くために、勾配のない決定論的手法を開発した。
この方法は、目的関数の領域と範囲の両方で同期解析を行うグラニュラーシービングとみなすことができる。
論文 参考訳(メタデータ) (2021-07-14T10:03:03Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。