Classical and Quantum Orbital Correlations in the Molecular Electronic
States
- URL: http://arxiv.org/abs/2107.13992v1
- Date: Thu, 29 Jul 2021 14:09:53 GMT
- Title: Classical and Quantum Orbital Correlations in the Molecular Electronic
States
- Authors: Onur Pusuluk, Mahir H. Yesiller, Gokhan Torun, \"Ozg\"ur E.
M\"ustecapl{\i}o\u{g}lu, Ersin Yurtsever, Vlatko Vedral
- Abstract summary: We decompose the pairwise orbital correlations into their classical and quantum parts in the presence of superselection rules.
quantum orbital correlations can be stronger than classical orbital correlations though not often.
orbital entanglement would be underestimated if the orbital density matrices were treated as qubit states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum superposition principle has been extensively utilized in the
quantum mechanical description of the bonding phenomenon. It explains the
emergence of delocalized molecular orbitals and provides a recipe for the
construction of near-exact electronic wavefunctions. On the other hand, its
existence in composite systems may give rise to nonclassical correlations that
are regarded now as a resource in quantum technologies. Here, we approach the
electronic ground states of three prototypical molecules from the point of view
of fermionic information theory. For the first time in the literature, we
properly decompose the pairwise orbital correlations into their classical and
quantum parts in the presence of superselection rules. We observe that quantum
orbital correlations can be stronger than classical orbital correlations though
not often. Also, quantum orbital correlations can survive even in the absence
of orbital entanglement depending on the symmetries of the constituent
orbitals. Finally, we demonstrate that orbital entanglement would be
underestimated if the orbital density matrices were treated as qubit states.
Related papers
- Quantum Information reveals that orbital-wise correlation is essentially classical in Natural Orbitals [0.0]
We investigate the nature of the orbital-wise electron correlations in wavefunctions of realistic cases classical or quantum.
Our analysis reveals a notable distinction between classical and quantum mutual information in molecular systems.
This finding suggests that wavefunction correlations, when viewed through the appropriate orbital basis, are predominantly classical.
arXiv Detail & Related papers (2024-04-22T11:26:56Z) - Spin-coupled molecular orbitals: chemical intuition meets quantum
chemistry [0.8397730500554048]
We introduce a generalised MO theory that includes spin-coupled radical states.
Our theory provides a model for chemical bonding that is both chemically intuitive and qualitatively accurate when combined with ab initio theory.
Although exploitation of our theory presents significant challenges for classical computing, the predictable structure of spin-coupled states is ideally suited to algorithms that exploit quantum computers.
arXiv Detail & Related papers (2024-02-13T23:57:04Z) - Natural orbitals and sparsity of quantum mutual information [0.0]
We show that the converged orbitals are coinciding with natural orbitals.
The correlation is encoded in a smaller number of qubit pairs contributing to the quantum mutual information matrix.
arXiv Detail & Related papers (2023-08-15T21:51:53Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Quantifying Electron Entanglement Faithfully [0.0]
Entanglement is one of the most fascinating concepts of modern physics.
We derive a formula for the relative entropy of entanglement between electron orbitals.
Its broad applicability in the quantum sciences is demonstrated.
arXiv Detail & Related papers (2022-07-07T15:32:12Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Two-orbital quantum discord in fermion systems [0.0]
We show that quantum correlations between natural orbital pairs disappear when the pairing tensor is zero.
We seek for the quantum discord in non-natural orbital basis.
arXiv Detail & Related papers (2020-12-02T15:58:16Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.