Ethical AI for Social Good
- URL: http://arxiv.org/abs/2107.14044v1
- Date: Wed, 14 Jul 2021 15:16:51 GMT
- Title: Ethical AI for Social Good
- Authors: Ramya Akula and Ivan Garibay
- Abstract summary: The concept of AI for Social Good(AI4SG) is gaining momentum in both information societies and the AI community.
This paper fills the vacuum by addressing the ethical aspects that are critical for future AI4SG efforts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of AI for Social Good(AI4SG) is gaining momentum in both
information societies and the AI community. Through all the advancement of
AI-based solutions, it can solve societal issues effectively. To date, however,
there is only a rudimentary grasp of what constitutes AI socially beneficial in
principle, what constitutes AI4SG in reality, and what are the policies and
regulations needed to ensure it. This paper fills the vacuum by addressing the
ethical aspects that are critical for future AI4SG efforts. Some of these
characteristics are new to AI, while others have greater importance due to its
usage.
Related papers
- Ten Hard Problems in Artificial Intelligence We Must Get Right [72.99597122935903]
We explore the AI2050 "hard problems" that block the promise of AI and cause AI risks.
For each problem, we outline the area, identify significant recent work, and suggest ways forward.
arXiv Detail & Related papers (2024-02-06T23:16:41Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
There are many emerging AI risks for humanity, such as autonomous weapons, automation-spurred job loss, socio-economic inequality, bias caused by data and algorithms, privacy violations and deepfakes.
Social diversity, equity and inclusion are considered key success factors of AI to mitigate risks, create values and drive social justice.
In our journey towards an AI-enabled sustainable future, we need to address AI ethics and governance as a priority.
arXiv Detail & Related papers (2022-09-28T22:23:10Z) - Ever heard of ethical AI? Investigating the salience of ethical AI
issues among the German population [0.0]
General interest in AI and a higher educational level are predictive of some engagement with AI.
Ethical issues are voiced only by a small subset of citizens with fairness, accountability, and transparency being the least mentioned ones.
Once ethical AI is top of the mind, there is some potential for activism.
arXiv Detail & Related papers (2022-07-28T13:46:13Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - The Role of Social Movements, Coalitions, and Workers in Resisting
Harmful Artificial Intelligence and Contributing to the Development of
Responsible AI [0.0]
Coalitions in all sectors are acting worldwide to resist hamful applications of AI.
There are biased, wrongful, and disturbing assumptions embedded in AI algorithms.
Perhaps one of the greatest contributions of AI will be to make us understand how important human wisdom truly is in life on earth.
arXiv Detail & Related papers (2021-07-11T18:51:29Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z) - Towards a framework for understanding societal and ethical implications
of Artificial Intelligence [2.28438857884398]
The objective of this paper is to identify the main societal and ethical challenges implied by a massive uptake of AI.
We have surveyed the literature for the most common challenges and classified them in seven groups: 1) Non-desired effects, 2) Liability, 3) Unknown consequences, 4) Relation people-robots, 5) Concentration of power and wealth, 6) Intentional bad uses, and 7) AI for weapons and warfare.
arXiv Detail & Related papers (2020-01-03T17:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.