論文の概要: Measuring Domain Knowledge for Early Prediction of Student Performance:
A Semantic Approach
- arxiv url: http://arxiv.org/abs/2107.14047v1
- Date: Thu, 15 Jul 2021 23:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 05:05:05.256526
- Title: Measuring Domain Knowledge for Early Prediction of Student Performance:
A Semantic Approach
- Title(参考訳): 学生のパフォーマンスの早期予測のためのドメイン知識の測定:意味論的アプローチ
- Authors: Anupam Khan, Sourav Ghosh, Soumya K. Ghosh
- Abstract要約: 研究者らは、パフォーマンスモデリング研究に様々な予測器を使用してきた。
約0.35万の観測に関する協会の採掘は、事前の認知が学生のパフォーマンスに影響を及ぼすことを証明している。
ドメイン知識を測定するという提案されたアプローチは、初期のパフォーマンスモデリング研究が予測子として使うのに役立ちます。
- 参考スコア(独自算出の注目度): 5.721241882795979
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing popularity of data mining catalyses the researchers to explore
various exciting aspects of education. Early prediction of student performance
is an emerging area among them. The researchers have used various predictors in
performance modelling studies. Although prior cognition can affect student
performance, establishing their relationship is still an open research
challenge. Quantifying the knowledge from readily available data is the major
challenge here. We have proposed a semantic approach for this purpose.
Association mining on nearly 0.35 million observations establishes that prior
cognition impacts the student performance. The proposed approach of measuring
domain knowledge can help the early performance modelling studies to use it as
a predictor.
- Abstract(参考訳): データマイニングの人気が高まり、研究者は教育の様々なエキサイティングな側面を探求する。
学生の成績の早期予測は、その中の新興分野である。
研究者らはパフォーマンスモデリングの研究に様々な予測器を使った。
事前認知は学生のパフォーマンスに影響を及ぼすが、その関係を確立することは依然としてオープンな研究課題である。
利用可能なデータから知識を定量化することが大きな課題です。
我々はこの目的のために意味論的アプローチを提案した。
約0.35万の観測による協会の採掘は、事前の認知が学生のパフォーマンスに影響を及ぼすことを証明している。
ドメイン知識を測定するという提案されたアプローチは、初期のパフォーマンスモデリング研究が予測器として使うのに役立つ。
関連論文リスト
- Human Action Anticipation: A Survey [86.415721659234]
行動予測に関する文献は、行動予測、活動予測、意図予測、目標予測など、様々なタスクにまたがる。
我々の調査は、この断片化された文献を結びつけることを目的としており、最近の技術革新とモデルトレーニングと評価のための新しい大規模データセットの開発をカバーしています。
論文 参考訳(メタデータ) (2024-10-17T21:37:40Z) - Bayesian Causal Forests for Longitudinal Data: Assessing the Impact of Part-Time Work on Growth in High School Mathematics Achievement [0.0]
ベイジアンカウサル林の長手延長について紹介する。
このモデルは、数学的能力における個々の成長と、パートタイム作業への参加の影響の両方を柔軟に識別することができる。
その結果、ほとんどの学生にとってパートタイムワークの負の影響が明らかとなったが、当初は学校所有感が低い学生にとって潜在的利益が示唆された。
論文 参考訳(メタデータ) (2024-07-16T17:18:33Z) - Machine Learning Predicts Upper Secondary Education Dropout as Early as the End of Primary School [0.0]
本研究は、幼稚園から9年生までのデータを含む13年間の縦断データセットを用いて、モデリングの地平を広げた。
本手法は,学生の学術的・認知的スキル,モチベーション,行動,幸福感,公式記録されたドロップアウトデータなど,幅広いパラメータを取り入れた。
本研究で開発された機械学習モデルでは, 曲線(AUC)の平均面積が0.61まで, 改善されたAUCは0.65まで, グレード9まで, 顕著な分類能力を示した。
論文 参考訳(メタデータ) (2024-03-01T13:18:08Z) - Causal Discovery and Counterfactual Explanations for Personalized
Student Learning [0.0]
この研究の主な貢献は、因果発見を用いて、学生のパフォーマンスの因果予測を識別することである。
実験結果から, 先行試験成績や数学能力が最終成績に及ぼす影響など, 因果関係が明らかとなった。
カウンターファクトリコメンデーションのリアルタイム実装と検証が大きな課題である。
論文 参考訳(メタデータ) (2023-09-18T10:32:47Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Tri-Branch Convolutional Neural Networks for Top-$k$ Focused Academic
Performance Prediction [28.383922154797315]
学業成績予測は、学生に関連する情報を活用し、将来の学業成果を予測することを目的としている。
本稿では、学生の日常行動軌跡を分析し、キャンパスのスマートカード記録を網羅的に追跡する。
本稿では,行ワイド,列ワイド,深さワイドのコンボリューションとアテンション操作を備えた新しいTri-Branch CNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-07-22T02:35:36Z) - Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from
the First Week's Activities [56.1344233010643]
いくつかの特徴は、学習者の誘惑や興味の欠如に寄与すると考えられており、そのことが解脱や総減退につながる可能性がある。
この研究は、いくつかの機械学習アプローチを比較して、最初の1週間から早期のドロップアウトを予測することを目的としている。
論文 参考訳(メタデータ) (2020-08-12T10:44:49Z) - Social Engagement versus Learning Engagement -- An Exploratory Study of
FutureLearn Learners [61.58283466715385]
大規模なオープンオンラインコース (MOOCs) は増加傾向にあるが、エンロリーのごく一部しかMOOCsを完了していない。
この研究は、MOOCにおける研究の進展とともに、学習者がピアとどのように相互作用するかに特に関係している。
この研究は、社会的構成主義的アプローチを採用し、協調学習を促進するFutureLearnプラットフォーム上で行われた。
論文 参考訳(メタデータ) (2020-08-11T16:09:10Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z) - Academic Performance Estimation with Attention-based Graph Convolutional
Networks [17.985752744098267]
学生の過去のデータから、学生のパフォーマンス予測の課題は、将来のコースにおける生徒の成績を予測することである。
学生のパフォーマンス予測の伝統的な方法は、通常、複数のコース間の基礎となる関係を無視する。
本稿では,学生のパフォーマンス予測のための新しい注目型グラフ畳み込みネットワークモデルを提案する。
論文 参考訳(メタデータ) (2019-12-26T23:11:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。