The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems
- URL: http://arxiv.org/abs/2406.00528v1
- Date: Sat, 1 Jun 2024 18:38:59 GMT
- Title: The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems
- Authors: M. Z. Naser, A. Z. Naser,
- Abstract summary: The Firefighter Optimization (FFO) algorithm is a new hybrid metaheuristic for optimization problems.
To evaluate the performance of FFO, extensive experiments were conducted, wherein the FFO was examined against 13 commonly used optimization algorithms.
The results demonstrate that FFO achieves comparative performance and, in some scenarios, outperforms commonly adopted optimization algorithms in terms of the obtained fitness, time taken for exaction, and research space covered per unit of time.
- Score: 3.2432648012273346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the Firefighter Optimization (FFO) algorithm as a new hybrid metaheuristic for optimization problems. This algorithm stems inspiration from the collaborative strategies often deployed by firefighters in firefighting activities. To evaluate the performance of FFO, extensive experiments were conducted, wherein the FFO was examined against 13 commonly used optimization algorithms, namely, the Ant Colony Optimization (ACO), Bat Algorithm (BA), Biogeography-Based Optimization (BBO), Flower Pollination Algorithm (FPA), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), Harmony Search (HS), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS), and Whale Optimization Algorithm (WOA), and across 24 benchmark functions of various dimensions and complexities. The results demonstrate that FFO achieves comparative performance and, in some scenarios, outperforms commonly adopted optimization algorithms in terms of the obtained fitness, time taken for exaction, and research space covered per unit of time.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - What is Metaheuristics? A Primer for the Epidemiologists [1.2783241540121182]
This paper reviews the basic BAT algorithm and its variants, including their applications in various fields.
As a specific application, we apply the BAT algorithm to a biostatistical estimation problem and show it has some clear advantages over existing algorithms.
arXiv Detail & Related papers (2024-10-26T02:13:00Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond [4.939986309170004]
The GOOSE algorithm is benchmarked on 19 well-known test functions.
The proposed algorithm is tested on 10 modern benchmark functions.
The achieved findings attest to the proposed algorithm's superior performance.
arXiv Detail & Related papers (2023-07-19T19:14:25Z) - Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study [0.0]
One of the most critical issues in machine learning is the selection of appropriate hyper parameters for training models.
Hyper parameter optimization (HPO) is a popular topic that artificial intelligence studies have focused on recently.
In this study, classical methods, such as grid, random search and Bayesian optimization, and population-based algorithms, such as genetic algorithms and particle swarm optimization, are discussed.
arXiv Detail & Related papers (2023-02-14T10:12:10Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Duck swarm algorithm: theory, numerical optimization, and applications [6.244015536594532]
A swarm intelligence-based optimization algorithm, named Duck Swarm Algorithm (DSA), is proposed in this study.
Two rules are modeled from the finding food and foraging of the duck, which corresponds to the exploration and exploitation phases of the proposed DSA.
Results show that DSA is a high-performance optimization method in terms of convergence speed and exploration-exploitation balance.
arXiv Detail & Related papers (2021-12-27T04:53:36Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Motion-Encoded Particle Swarm Optimization for Moving Target Search
Using UAVs [4.061135251278187]
This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs)
The proposed MPSO is developed to solve that problem by encoding the search trajectory as a series of UAV motion paths evolving over the generation of particles in a PSO algorithm.
Results from extensive simulations with existing methods show that the proposed MPSO improves the detection performance by 24% and time performance by 4.71 times compared to the original PSO.
arXiv Detail & Related papers (2020-10-05T14:17:49Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.