論文の概要: The Minimum Edit Arborescence Problem and Its Use in Compressing Graph
Collections [Extended Version]
- arxiv url: http://arxiv.org/abs/2107.14525v1
- Date: Fri, 30 Jul 2021 10:18:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-02 16:47:38.084014
- Title: The Minimum Edit Arborescence Problem and Its Use in Compressing Graph
Collections [Extended Version]
- Title(参考訳): 最小編集アルブレッセンス問題とそのグラフコレクション圧縮への応用 [extended version]
- Authors: Lucas Gnecco, Nicolas Boria, S\'ebastien Bougleux, Florian Yger, David
B. Blumenthal
- Abstract要約: コレクション内のデータ間の編集パスに依存する編集アーボラッセンスという,統一的で汎用的な構造を導入する。
編集コストを抑えるエンコードサイズを導入することで,ラベル付きグラフのコレクションを効率よく圧縮する方法として利用できることを示す。
- 参考スコア(独自算出の注目度): 6.604255432427447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inference of minimum spanning arborescences within a set of objects is a
general problem which translates into numerous application-specific
unsupervised learning tasks. We introduce a unified and generic structure
called edit arborescence that relies on edit paths between data in a
collection, as well as the Min Edit Arborescence Problem, which asks for an
edit arborescence that minimizes the sum of costs of its inner edit paths.
Through the use of suitable cost functions, this generic framework allows to
model a variety of problems. In particular, we show that by introducing
encoding size preserving edit costs, it can be used as an efficient method for
compressing collections of labeled graphs. Experiments on various graph
datasets, with comparisons to standard compression tools, show the potential of
our method.
- Abstract(参考訳): オブジェクトの集合内の最小スパン・アルブレッセンスの推論は、多くのアプリケーション固有の教師なし学習タスクに変換される一般的な問題である。
我々は、コレクション内のデータ間の編集パスに依存する編集アーボラッセンスと呼ばれる統一的で汎用的な構造と、内部編集パスのコストの総和を最小化する編集アーボラッセンスを求めるMin Edit Arborescence Problemを導入する。
適切なコスト関数を使用することで、この汎用フレームワークは様々な問題をモデル化することができる。
特に,編集コストを節約するエンコーディングサイズを導入することで,ラベル付きグラフのコレクションを効率的に圧縮する方法として使用できることを示す。
各種グラフデータセットの実験と標準圧縮ツールとの比較により,本手法の可能性を示す。
関連論文リスト
- Dependency Graph Parsing as Sequence Labeling [18.079016557290338]
我々は、グラフ解析をタグ付けタスクとしてキャストするのに使用できる、非有界および有界な線形化の範囲を定義する。
セマンティック依存関係とUD解析の強化に関する実験結果から, シーケンスラベル依存グラフは, 符号化の優れた選択により, 高い効率性と, 最先端の精度を両立させることがわかった。
論文 参考訳(メタデータ) (2024-10-23T15:37:02Z) - LoMOE: Localized Multi-Object Editing via Multi-Diffusion [8.90467024388923]
本稿では,ゼロショットローカライズされたマルチオブジェクト編集のための新しいフレームワークを提案する。
提案手法は, 前景マスクとそれに対応する簡単なテキストプロンプトを利用して, 対象領域に局所的な影響を与える。
ラテント空間内のクロスアテンションとバックグラウンドロスの組み合わせにより、編集対象の特性が保存される。
論文 参考訳(メタデータ) (2024-03-01T10:46:47Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
オブジェクトレベルのきめ細かい編集を可能にするために,オブジェクト認識型インバージョンと再アセンブリ(OIR)を提案する。
画像の編集時に各編集ペアに対して最適な反転ステップを見つけるために,検索基準を用いる。
本手法は,オブジェクトの形状,色,材料,カテゴリなどの編集において,特に多目的編集シナリオにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-18T17:59:02Z) - EPIC: Graph Augmentation with Edit Path Interpolation via Learnable Cost [12.191001329584502]
本稿では,グラフデータセットを新たに拡張するEPIC (Edit Path Interpolation via learnable Cost)を提案する。
不規則な領域にある2つのグラフの間を補間するために、EPICは2つのグラフ間の変換プロセスを表す編集パスを構築する。
我々のアプローチは多くのタスクにおいて既存の拡張テクニックよりも優れています。
論文 参考訳(メタデータ) (2023-06-02T07:19:07Z) - Iterative Scene Graph Generation [55.893695946885174]
シーングラフ生成は、オブジェクトエンティティとその対応する相互作用述語を所定の画像(またはビデオ)で識別する。
シーングラフ生成への既存のアプローチは、推定イテレーションの実現を可能にするために、関節分布の特定の因子化を前提としている。
本稿では,この制限に対処する新しいフレームワークを提案するとともに,画像に動的条件付けを導入する。
論文 参考訳(メタデータ) (2022-07-27T10:37:29Z) - Unsupervised Matching of Data and Text [6.2520079463149205]
テキストコンテンツと構造化データとを教師なし設定でマッチングするフレームワークを導入する。
提案手法は,コーパスの内容に対して微細なグラフを構築し,低次元空間で一致する対象を表現するために単語埋め込みを導出する。
実使用事例と公開データセットの実験により、我々のフレームワークは単語埋め込みや微調整言語モデルよりも優れた埋め込みを生成することが示された。
論文 参考訳(メタデータ) (2021-12-16T10:40:48Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGANは高品質で高精度なセマンティック画像編集のための新しい手法である。
EditGANは前例のない細部と自由度で画像を操作可能であることを示す。
また、複数の編集を組み合わせることも簡単で、EditGANのトレーニングデータ以外の編集も可能になります。
論文 参考訳(メタデータ) (2021-11-04T22:36:33Z) - Learning by Planning: Language-Guided Global Image Editing [53.72807421111136]
あいまいな編集言語要求を一連の編集操作にマッピングするテキスト・ツー・オペレーティング・モデルを開発した。
タスクの唯一の監督はターゲットイメージであり、シーケンシャルな決定の安定したトレーニングには不十分である。
本研究では,対象画像から可能な編集シーケンスを疑似基底真理として生成する,新たな操作計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-24T16:30:03Z) - Learning Structural Edits via Incremental Tree Transformations [102.64394890816178]
構造化データのインクリメンタルな編集(すなわち「構造的編集」)のための汎用モデルを提案する。
我々の編集者は、反復的にツリー編集(例えば、サブツリーの削除や追加)を生成し、部分的に編集されたデータに適用することを学びます。
提案したエディタを2つのソースコード編集データセットで評価した結果,提案する編集エンコーダでは,従来よりも精度が向上していることがわかった。
論文 参考訳(メタデータ) (2021-01-28T16:11:32Z) - Combinatorial Learning of Graph Edit Distance via Dynamic Embedding [108.49014907941891]
本稿では,従来の検索手法による編集経路の解釈可能性を組み合わせたハイブリッド手法を提案する。
動的プログラミングにインスパイアされたノードレベルの埋め込みは、動的再利用方式で指定され、サブ最適分岐がプルーニングされることが推奨される。
異なるグラフデータセットを用いた実験結果から,A* の探索処理は精度を犠牲にすることなく極めて容易であることが示唆された。
論文 参考訳(メタデータ) (2020-11-30T17:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。