Two-photon sideband transition in a driven quantum Rabi model :
Quantitative discussions with derived longitudinal drives and beyond the
rotating wave approximation
- URL: http://arxiv.org/abs/2108.00137v2
- Date: Sat, 11 Nov 2023 09:32:39 GMT
- Title: Two-photon sideband transition in a driven quantum Rabi model :
Quantitative discussions with derived longitudinal drives and beyond the
rotating wave approximation
- Authors: Byoung-moo Ann, Wouter Kessels, Gary A. Steele
- Abstract summary: We analytically and numerically study the sideband transition dynamics of the driven quantum Rabi model (QRM)
We focus in particular on the conditions when the external transverse drive fields induce first-order sideband transitions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we analytically and numerically study the sideband transition
dynamics of the driven quantum Rabi model (QRM). We focus in particular on the
conditions when the external transverse drive fields induce first-order
sideband transitions. Inducing sideband transitions between two different
systems is an essential technique for various physical models, including the
QRM. However, despite its importance, a precise analytical study has not been
reported yet that successfully explains the sideband transition rates in a
driven QRM applicable for all system parameter configurations. In our study, we
analytically derive the sideband transition rates based on second-order
perturbation theory, not relying on the rotating wave approximation (RWA)
\cite{RWA}. Our formula are valid for all ranges of drive frequencies and
system's parameters. Our analytical derived formula agrees well with the
numerical results in a regime of moderate drive amplitudes. Interestingly, we
have found a non-trivial longitudinal drive effect derived from the transverse
drive Hamiltonian. This accounts for significant corrections to the sideband
transition rates that are expected without considering the derived longitudinal
effect. Using this approach, one can precisely estimate the sideband transition
rates in the QRM not confining themselves within specific parameter regimes.
This provides important contributions for understanding experiments described
by the driven QRM.
Related papers
- Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Joint quantum estimation of loss and nonlinearity in driven-dissipative
Kerr resonators [0.0]
We consider the realistic situation in which the parameters of interest are the loss rate and the nonlinear coupling, whereas the amplitude of the coherent driving is known and tunable.
We also investigate the performance of quadrature detection, and show that for both parameters the Fisher information oscillates in time, repeatedly approaching the corresponding QFI.
arXiv Detail & Related papers (2022-12-09T20:50:33Z) - Engineering Floquet Dynamical Quantum Phase Transition [0.0]
Floquet dynamical quantum phase transitions (FDQPTs) are signified by recurrent nonanalytic behaviors of observables in time.
We introduce a quench-free and generic approach to engineer and control FDQPTs for both pure and mixed Floquet states.
arXiv Detail & Related papers (2022-06-07T09:41:21Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Measurement-Induced Entanglement Transitions in the Quantum Ising Chain:
From Infinite to Zero Clicks [0.0]
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment.
We find a remarkably similar phenomenology as the measurement strength $gamma$ is increased.
We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement.
arXiv Detail & Related papers (2021-03-16T15:30:57Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Sideband transitions in a two-mode Josephson circuit driven beyond the
rotating wave approximation [0.0]
We experimentally, numerically, and analytically explore strongly driven two-mode Josephson circuits in the regime of strong driving and large detuning.
We find that the breakdown of the rotating wave approximation in the regime studied does not lead to qualitatively different dynamics.
This is an interesting consequence compared to the carrier transition case, where the breakdown of the RWA results in qualitatively different time evolution of the quantum state.
arXiv Detail & Related papers (2020-11-30T07:51:48Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.