論文の概要: Using Knowledge-Embedded Attention to Augment Pre-trained Language
Models for Fine-Grained Emotion Recognition
- arxiv url: http://arxiv.org/abs/2108.00194v1
- Date: Sat, 31 Jul 2021 09:41:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-03 15:39:42.739278
- Title: Using Knowledge-Embedded Attention to Augment Pre-trained Language
Models for Fine-Grained Emotion Recognition
- Title(参考訳): 知識埋め込みによる感情認識のための事前学習言語モデルの拡張
- Authors: Varsha Suresh, Desmond C. Ong
- Abstract要約: 我々は,事前学習した自己意識モデルに外部知識を導入することで,微粒な感情認識を改善することに集中する。
結果と誤差解析は,複数のデータセットで過去のモデルより優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern emotion recognition systems are trained to recognize only a small set
of emotions, and hence fail to capture the broad spectrum of emotions people
experience and express in daily life. In order to engage in more empathetic
interactions, future AI has to perform \textit{fine-grained} emotion
recognition, distinguishing between many more varied emotions. Here, we focus
on improving fine-grained emotion recognition by introducing external knowledge
into a pre-trained self-attention model. We propose Knowledge-Embedded
Attention (KEA) to use knowledge from emotion lexicons to augment the
contextual representations from pre-trained ELECTRA and BERT models. Our
results and error analyses outperform previous models on several datasets, and
is better able to differentiate closely-confusable emotions, such as afraid and
terrified.
- Abstract(参考訳): 現代の感情認識システムは、少数の感情のみを認識するように訓練されており、それによって人々が日常的に経験し表現する幅広い感情を捉えることができない。
より共感的な相互作用に取り組むためには、未来のAIは、より多様な感情を区別して、‘textit{fine-fine-fine} 感情認識を行う必要がある。
本稿では,事前学習した自己意識モデルに外部知識を導入することで,感情認識の微粒化に焦点をあてる。
本稿では,感情辞書からの知識を用いて,事前学習したELECTRAモデルとBERTモデルからの文脈表現を増強する知識埋め込み注意(KEA)を提案する。
私たちの結果とエラー解析は、いくつかのデータセットで以前のモデルよりも優れており、恐怖や恐怖のような、信頼性の高い感情を区別できる。
関連論文リスト
- Emotional Images: Assessing Emotions in Images and Potential Biases in Generative Models [0.0]
本稿では、生成人工知能(AI)モデルにより生成された画像の感情的誘発における潜在的なバイアスと矛盾について検討する。
我々は、AIが生成した画像によって誘発される感情と、それらの画像を作成するために使用されるプロンプトによって誘発される感情を比較した。
発見は、AI生成画像が元のプロンプトに関係なく、しばしばネガティブな感情的コンテンツに傾いていることを示している。
論文 参考訳(メタデータ) (2024-11-08T21:42:50Z) - AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
この研究は、あいまいな感情を認識する上でのLarge Language Models(LLM)の可能性を探究する最初のものである。
我々はゼロショットと少数ショットのプロンプトを設計し、過去の対話を曖昧な感情認識のための文脈情報として組み込んだ。
論文 参考訳(メタデータ) (2024-09-26T23:25:21Z) - emotion2vec: Self-Supervised Pre-Training for Speech Emotion
Representation [42.29118614670941]
普遍的な音声感情表現モデルである感情2vecを提案する。
感情2vecは自己監督型オンライン蒸留を通じてラベルなしの感情データに基づいて事前訓練される。
最先端の訓練済みユニバーサルモデルや感情スペシャリストモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-23T07:46:55Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
EmotionPromptはAIモデルの性能を向上し、EmotionAttackはそれを妨げうることを示す。
EmotionDecodeによると、AIモデルは人間の脳内のドーパミンのメカニズムに似た感情的な刺激を理解することができる。
論文 参考訳(メタデータ) (2023-12-18T11:19:45Z) - Learning Emotion Representations from Verbal and Nonverbal Communication [7.747924294389427]
本稿では,言語・非言語コミュニケーションから視覚的感情表現を抽出する最初の事前学習パラダイムであるEmotionCLIPを提案する。
EmotionCLIPは、感情誘導型コントラスト学習を用いて、主観的文脈エンコーディングと言語感情キューを通じて、非言語感情キューへの参加を誘導する。
EmotionCLIPは、感情理解におけるデータ不足の一般的な問題に対処し、関連する領域の進歩を促進する。
論文 参考訳(メタデータ) (2023-05-22T21:36:55Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
感情的テキスト音声合成(ETTS)は近年大きく進歩している。
i-ETTSと呼ばれるETTSの新しい対話型トレーニングパラダイムを提案する。
i-ETTSの最適化品質を確保するため、強化学習による反復トレーニング戦略を策定します。
論文 参考訳(メタデータ) (2021-04-03T13:52:47Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z) - Meta Transfer Learning for Emotion Recognition [42.61707533351803]
本研究では、ある視覚的/聴覚的感情領域から学習した感情知識を、別の視覚的/聴覚的感情領域に伝達できるPathNetに基づく伝達学習手法を提案する。
提案システムは感情認識の性能を向上し,最近提案された微調整/事前学習モデルに基づく伝達学習手法よりも性能が大幅に向上する。
論文 参考訳(メタデータ) (2020-06-23T00:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。