論文の概要: TabPert: An Effective Platform for Tabular Perturbation
- arxiv url: http://arxiv.org/abs/2108.00603v1
- Date: Mon, 2 Aug 2021 02:37:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 01:47:03.642826
- Title: TabPert: An Effective Platform for Tabular Perturbation
- Title(参考訳): tabpert: 表の摂動に有効なプラットフォーム
- Authors: Nupur Jain, Vivek Gupta, Anshul Rai, Gaurav Kumar
- Abstract要約: TabPertを使用すると、ユーザはテーブルを更新し、関連する仮説を変更し、ラベルを変更し、仮説分類に重要な行をハイライトすることができる。
これらのカウンターファクトテーブルと仮説は、メタデータと同様に、既存のモデルの欠点を体系的かつ定量的に探求するために使用することができる。
- 参考スコア(独自算出の注目度): 6.555691728969102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To truly grasp reasoning ability, a Natural Language Inference model should
be evaluated on counterfactual data. TabPert facilitates this by assisting in
the generation of such counterfactual data for assessing model tabular
reasoning issues. TabPert allows a user to update a table, change its
associated hypotheses, change their labels, and highlight rows that are
important for hypothesis classification. TabPert also captures information
about the techniques used to automatically produce the table, as well as the
strategies employed to generate the challenging hypotheses. These
counterfactual tables and hypotheses, as well as the metadata, can then be used
to explore an existing model's shortcomings methodically and quantitatively.
- Abstract(参考訳): 推論能力を真に把握するには、偽データを用いて自然言語推論モデルを評価する必要がある。
TabPertは、そのような偽データの生成を支援して、モデル表の推論問題を評価することで、これを促進する。
TabPertを使えば、ユーザはテーブルを更新し、関連する仮説を変更し、ラベルを変更し、仮説分類に重要な行をハイライトすることができる。
tabpertは、テーブルの自動生成に使用されるテクニックに関する情報と、挑戦的な仮説を生成するための戦略もキャプチャする。
これらの反事実テーブルと仮説、およびメタデータは、既存のモデルの欠点を体系的かつ定量的に探究するために使用できる。
関連論文リスト
- A Simple Baseline for Predicting Events with Auto-Regressive Tabular Transformers [70.20477771578824]
イベント予測への既存のアプローチには、タイムアウェアな位置埋め込み、学習行とフィールドエンコーディング、クラス不均衡に対処するオーバーサンプリング方法などがある。
基本位置埋め込みと因果言語モデリングの目的を持つ標準自己回帰型LPM変換器を用いて,単純だが柔軟なベースラインを提案する。
私たちのベースラインは、一般的なデータセットで既存のアプローチよりも優れており、さまざまなユースケースに使用することができます。
論文 参考訳(メタデータ) (2024-10-14T15:59:16Z) - FLEXTAF: Enhancing Table Reasoning with Flexible Tabular Formats [48.47559543509975]
フレキシブルフォーマットを用いてテーブル推論性能を向上させるためのFLEXTAF-SingleとFLEXTAF-Voteを提案する。
WikiTableQuestionsとTabFactに関する我々の実験は、平均的な2.3%と4.8%の大幅な改善を示している。
論文 参考訳(メタデータ) (2024-08-16T17:00:11Z) - AdapTable: Test-Time Adaptation for Tabular Data via Shift-Aware Uncertainty Calibrator and Label Distribution Handler [29.395855812763617]
我々は、ソースデータにアクセスすることなく、ターゲットデータに機械学習モデルを適用するためのフレームワークであるAdapTableを提案する。
AdapTableは、(1)シフト認識不確実性校正器を用いてモデル予測を校正し、2)ターゲットラベル分布とラベル分布ハンドラとを一致させるようにこれらの予測を調整する。
我々の結果は、AdapTableが様々な現実世界の分散シフトを処理できることを示し、データセットで最大16%の改善を実現した。
論文 参考訳(メタデータ) (2024-07-15T15:02:53Z) - LaTable: Towards Large Tabular Models [63.995130144110156]
タブラル生成基盤モデルは、異なるデータセットの不均一な特徴空間のために構築が困難である。
LaTableは、これらの課題に対処し、異なるデータセットでトレーニング可能な、新しい拡散モデルである。
LaTableは、分散生成のベースラインよりも優れており、微調整されたLaTableは、より少ないサンプルで分散データセットをより良く生成できる。
論文 参考訳(メタデータ) (2024-06-25T16:03:50Z) - Chain-of-Table: Evolving Tables in the Reasoning Chain for Table
Understanding [79.9461269253121]
そこで我々は、中間思考のプロキシとして、図表データを推論チェーンで明示的に使用するChain-of-Tableフレームワークを提案する。
Chain-of-TableはWikiTQ、FeTaQA、TabFactベンチマークで最新のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-01-09T07:46:26Z) - TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications [9.457938949410583]
TabRepoは、モデル評価と予測の新しいデータセットである。
200データセットで評価された1310モデルの予測とメトリクスを含んでいる。
論文 参考訳(メタデータ) (2023-11-06T09:17:18Z) - Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation [67.30538142519067]
メタ表現(TabPTM)を用いたタブラルデータ事前学習を提案する。
深層ニューラルネットワークは、これらのメタ表現とデータセット固有の分類信頼度を関連付けるように訓練される。
実験により、TabPTMは、数ショットのシナリオであっても、新しいデータセットで有望なパフォーマンスを達成することを確認した。
論文 参考訳(メタデータ) (2023-10-31T18:03:54Z) - Generative Table Pre-training Empowers Models for Tabular Prediction [71.76829961276032]
本稿では,テーブル事前学習を利用した最初の試みであるTapTapを提案する。
TapTapは、プライバシ保護、リソースの低さ、価値計算の欠如、不均衡な分類など、さまざまなアプリケーションをサポートするための高品質な合成テーブルを生成することができる。
LightGBM、Multilayer Perceptron (MLP)、Transformerなどのバックボーンモデルと簡単に組み合わせることができる。
論文 参考訳(メタデータ) (2023-05-16T06:37:38Z) - Realistic Data Augmentation Framework for Enhancing Tabular Reasoning [15.339526664699845]
半構造化テーブル推論のような自然言語推論タスクのためのトレーニングデータを構築するための既存のアプローチは、クラウドソーシングまたは完全に自動化された方法である。
本稿では,表型推論のためのデータ拡張のための現実的な半自動フレームワークを開発する。
論文 参考訳(メタデータ) (2022-10-23T17:32:19Z) - Understanding tables with intermediate pre-training [11.96734018295146]
我々は、テーブルベースのBERTモデルであるTAPAASを適用して、エンターテイメントを認識する。
我々は,テーブルプルーニングを前処理ステップとして評価し,トレーニングと予測効率を大幅に向上させる。
論文 参考訳(メタデータ) (2020-10-01T17:43:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。