論文の概要: Cross-Lingual Knowledge Transfer for Clinical Phenotyping
- arxiv url: http://arxiv.org/abs/2208.01912v1
- Date: Wed, 3 Aug 2022 08:33:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-04 13:37:44.959761
- Title: Cross-Lingual Knowledge Transfer for Clinical Phenotyping
- Title(参考訳): 臨床表現型化のための言語間知識伝達
- Authors: Jens-Michalis Papaioannou, Paul Grundmann, Betty van Aken, Athanasios
Samaras, Ilias Kyparissidis, George Giannakoulas, Felix Gers, Alexander
L\"oser
- Abstract要約: 本稿では,英語を使わないクリニックに対して,このタスクを実行するための言語間知識伝達戦略について検討する。
ギリシャ語とスペイン語のクリニックに対して,異なる臨床領域のクリニカルノートを活用して,これらの戦略を評価する。
以上の結果から,多言語データを用いることで,臨床表現型モデルが改善され,データの疎度を補うことが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 55.92262310716537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical phenotyping enables the automatic extraction of clinical conditions
from patient records, which can be beneficial to doctors and clinics worldwide.
However, current state-of-the-art models are mostly applicable to clinical
notes written in English. We therefore investigate cross-lingual knowledge
transfer strategies to execute this task for clinics that do not use the
English language and have a small amount of in-domain data available. We
evaluate these strategies for a Greek and a Spanish clinic leveraging clinical
notes from different clinical domains such as cardiology, oncology and the ICU.
Our results reveal two strategies that outperform the state-of-the-art:
Translation-based methods in combination with domain-specific encoders and
cross-lingual encoders plus adapters. We find that these strategies perform
especially well for classifying rare phenotypes and we advise on which method
to prefer in which situation. Our results show that using multilingual data
overall improves clinical phenotyping models and can compensate for data
sparseness.
- Abstract(参考訳): 臨床表現型は患者の記録から自動的に臨床症状を抽出し、世界中の医師や診療所にとって有用である。
しかし、現在の最先端モデルは、主に英語で書かれた臨床ノートに適用できる。
そこで我々は,英語を使用せず,ドメイン内データが少ないクリニックに対して,このタスクを実行するための言語間知識伝達戦略を検討する。
これらの戦略を, 循環器科, 腫瘍学, icuなどの異なる臨床領域の臨床ノートを用いて, ギリシャ語とスペイン語のクリニックで評価した。
提案手法は,ドメイン固有エンコーダと言語間エンコーダとアダプタを併用することで,最先端の翻訳手法よりも優れた2つの戦略を示す。
これらの戦略は, 稀な表現型を分類する上で特に有効であり, どのような状況でどの方法を好むかを助言する。
以上の結果から,多言語データを用いることで臨床表現型モデルが改善され,データのばらばらさを補うことができる。
関連論文リスト
- Investigating Alternative Feature Extraction Pipelines For Clinical Note
Phenotyping [0.0]
医療属性の抽出に計算システムを用いると、多くの応用が期待できる。
BERTベースのモデルは、臨床ノートを一連の表現に変換するために使用することができる。
そこで本研究では,ScispaCyNeumannを用いた代替パイプラインを提案する。
論文 参考訳(メタデータ) (2023-10-05T02:51:51Z) - Knowledge Graph Embeddings for Multi-Lingual Structured Representations
of Radiology Reports [40.606143019674654]
本稿では,新しい軽量グラフベースの埋め込み手法,特に放射線学レポートのキャタリングについて紹介する。
報告書の構造と構成を考慮し、報告書の医療用語を接続する。
本稿では,X線レポートの疾患分類と画像分類という2つのタスクにこの埋め込みを組み込むことについて述べる。
論文 参考訳(メタデータ) (2023-09-02T11:46:41Z) - sEHR-CE: Language modelling of structured EHR data for efficient and
generalizable patient cohort expansion [0.0]
sEHR-CEは、異種臨床データセットの統合表現型化と分析を可能にするトランスフォーマーに基づく新しいフレームワークである。
大規模研究である英国バイオバンクのプライマリ・セカンダリ・ケアデータを用いてアプローチを検証する。
論文 参考訳(メタデータ) (2022-11-30T16:00:43Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - Developing a general-purpose clinical language inference model from a
large corpus of clinical notes [0.30586855806896046]
カリフォルニア大学サンフランシスコ校(UCSF)で著述された7500万の同定された臨床記録を多種多様な同定コーパスを用いて,BERTモデルからBi Domain Decoderを訓練した。
本モデルは,UCSFデータを用いた2つのタスクのシステム内評価において,これらのモデルと同等の大きさのバイオメディカル言語モデルと同等の性能を発揮した。
論文 参考訳(メタデータ) (2022-10-12T20:08:45Z) - Classifying Cyber-Risky Clinical Notes by Employing Natural Language
Processing [9.77063694539068]
近年、アメリカ合衆国内の一部の州では、患者が臨床ノートに自由にアクセスできるように求めている。
本研究は,臨床ノートにおけるセキュリティ・プライバシリスクの特定方法について検討する。
論文 参考訳(メタデータ) (2022-03-24T00:36:59Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
本稿では,各単語の意味的意味をより正確に把握するために,文脈型単語埋め込み手法を提案する。
言語モデル(C-ELMo)とC-Flair(C-Flair)の2つの深い文脈型言語モデル(C-ELMo)を事前訓練する。
明示的な実験により、静的単語埋め込みとドメインジェネリック言語モデルの両方と比較して、我々のモデルは劇的に改善されている。
論文 参考訳(メタデータ) (2021-06-23T18:12:58Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。