MPEC: Manifold-Preserved EEG Classification via an Ensemble of Clustering-Based Classifiers
- URL: http://arxiv.org/abs/2504.21427v1
- Date: Wed, 30 Apr 2025 08:34:15 GMT
- Title: MPEC: Manifold-Preserved EEG Classification via an Ensemble of Clustering-Based Classifiers
- Authors: Shermin Shahbazi, Mohammad-Reza Nasiri, Majid Ramezani,
- Abstract summary: We present MPEC (Manifold-Preserved EEG Classification via an Ensemble of Clustering-Based Radial Basiss) as a new method for accurate classification of EEG signals.<n>MPEC achieves superior results, validated by significant improvements on the BCI Competition IV dataset 2a.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate classification of EEG signals is crucial for brain-computer interfaces (BCIs) and neuroprosthetic applications, yet many existing methods fail to account for the non-Euclidean, manifold structure of EEG data, resulting in suboptimal performance. Preserving this manifold information is essential to capture the true geometry of EEG signals, but traditional classification techniques largely overlook this need. To this end, we propose MPEC (Manifold-Preserved EEG Classification via an Ensemble of Clustering-Based Classifiers), that introduces two key innovations: (1) a feature engineering phase that combines covariance matrices and Radial Basis Function (RBF) kernels to capture both linear and non-linear relationships among EEG channels, and (2) a clustering phase that employs a modified K-means algorithm tailored for the Riemannian manifold space, ensuring local geometric sensitivity. Ensembling multiple clustering-based classifiers, MPEC achieves superior results, validated by significant improvements on the BCI Competition IV dataset 2a.
Related papers
- Autoencoded UMAP-Enhanced Clustering for Unsupervised Learning [49.1574468325115]
We propose a novel approach to unsupervised learning by constructing a non-linear embedding of the data into a low-dimensional space followed by any conventional clustering algorithm.<n>The embedding promotes clusterability of the data and is comprised of two mappings: the encoder of an autoencoder neural network and the output of UMAP algorithm.<n>When applied to MNIST data, AUEC significantly outperforms the state-of-the-art techniques in terms of clustering accuracy.
arXiv Detail & Related papers (2025-01-13T22:30:38Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Enhancing Motor Imagery Decoding in Brain Computer Interfaces using
Riemann Tangent Space Mapping and Cross Frequency Coupling [5.860347939369221]
Motor Imagery (MI) serves as a crucial experimental paradigm within the realm of Brain Computer Interfaces (BCIs)
This paper introduces a novel approach to enhance the representation quality and decoding capability pertaining to MI features.
A lightweight convolutional neural network is employed for further feature extraction and classification, operating under the joint supervision of cross-entropy and center loss.
arXiv Detail & Related papers (2023-10-29T23:37:47Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification [2.4727719996518487]
This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks.
For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals.
In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support.
arXiv Detail & Related papers (2021-07-30T06:18:05Z) - Common Spatial Generative Adversarial Networks based EEG Data
Augmentation for Cross-Subject Brain-Computer Interface [4.8276709243429]
Cross-subject application of EEG-based brain-computer interface (BCI) has always been limited by large individual difference and complex characteristics that are difficult to perceive.
We propose a cross-subject EEG classification framework with a generative adversarial networks (GANs) based method named common spatial GAN (CS-GAN)
Our framework provides a promising way to deal with the cross-subject problem and promote the practical application of BCI.
arXiv Detail & Related papers (2021-02-08T10:37:03Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Improving EEG Decoding via Clustering-based Multi-task Feature Learning [27.318646122939537]
Machine learning provides a promising technique to optimize EEG patterns toward better decoding accuracy.
Existing algorithms do not effectively explore the underlying data structure capturing the true EEG sample distribution.
We propose a clustering-based multi-task feature learning algorithm for improved EEG pattern decoding.
arXiv Detail & Related papers (2020-12-12T13:31:53Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
The mixture extension of exponential family principal component analysis ( EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA.
The traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering.
In this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework.
arXiv Detail & Related papers (2020-04-07T04:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.