Inverse-design of high-dimensional quantum optical circuits in a complex medium
- URL: http://arxiv.org/abs/2204.00578v2
- Date: Tue, 10 Sep 2024 14:38:02 GMT
- Title: Inverse-design of high-dimensional quantum optical circuits in a complex medium
- Authors: Suraj Goel, Saroch Leedumrongwatthanakun, Natalia Herrera Valencia, Will McCutcheon, Armin Tavakoli, Claudio Conti, Pepijn W. H. Pinkse, Mehul Malik,
- Abstract summary: We show how to embed an optical circuit in the higher-dimensional space of a large, ambient mode-mixer.
This allows us to forgo control over each individual circuit element, while retaining a high degree of programmability over the circuit.
Our work serves as an alternative yet powerful approach for realising precise control over high-dimensional quantum states of light.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Programmable optical circuits form a key part of quantum technologies today, ranging from transceivers for quantum communication to integrated photonic chips for quantum information processing. As the size of such circuits is increased, maintaining precise control over every individual component becomes challenging, leading to a reduction in the quality of the operations performed. In parallel, minor imperfections in circuit fabrication are amplified in this regime, dramatically inhibiting their performance. Here we show how embedding an optical circuit in the higher-dimensional space of a large, ambient mode-mixer using inverse-design techniques allows us to forgo control over each individual circuit element, while retaining a high degree of programmability over the circuit. Using this approach, we implement high-dimensional linear optical circuits within a complex scattering medium consisting of a commercial multi-mode fibre placed between two controllable phase planes. We employ these circuits to manipulate high-dimensional spatial-mode entanglement in up to seven dimensions, demonstrating their application as fully programmable quantum gates. Furthermore, we show how their programmability allows us to turn the multi-mode fibre itself into a generalised multi-outcome measurement device, allowing us to both transport and certify entanglement within the transmission channel. Finally, we discuss the scalability of our approach, numerically showing how a high circuit fidelity can be achieved with a low circuit depth by harnessing the resource of a high-dimensional mode-mixer. Our work serves as an alternative yet powerful approach for realising precise control over high-dimensional quantum states of light, with clear applications in next-generation quantum communication and computing technologies.
Related papers
- Programmable quantum circuits in a large-scale photonic waveguide array [2.784440641237062]
We show the first demonstration of precise control of single photon states on an $11times 11$ continuously-coupled programmable waveguide array.
Our results demonstrate the potential of using this technology as a building block for quantum information processing applications.
arXiv Detail & Related papers (2024-05-22T13:59:32Z) - Characterization of multi-mode linear optical networks [0.0]
We formulate efficient procedures for the characterization of optical circuits in the presence of imperfections.
We show the viability of this approach in an experimentally relevant scenario, defined by a tunable integrated photonic circuit.
Our findings can find application in a wide range of optical setups, based both on bulk and integrated configurations.
arXiv Detail & Related papers (2023-04-13T13:09:14Z) - Nonorthogonal coding in spectrally-entangled photons [0.0]
A fiber-based long-distance quantum communication can be feasible owing to its low transmission loss.
With multiplexed photon pairs, we propose to implement a nonorthogonal coding scheme in their spectral modes.
arXiv Detail & Related papers (2022-11-21T15:04:43Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Fault-Tolerant Directional Couplers for State Manipulation in Silicon
Photonic-Integrated Circuits [0.0]
Photonic integrated circuits play a central role in current and future applications such as communications, sensing, ranging, and information processing.
Fault-tolerant quantum computing mandates very accurate and robust quantum gates.
We demonstrate high-fidelity directional couplers for single-qubit gates in photonic integrated waveguides.
arXiv Detail & Related papers (2022-04-07T11:36:29Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - On-chip parallel processing of quantum frequency combs for
high-dimensional hyper-entanglement generation [4.1893829542288294]
High-dimensional encoding and hyper-entanglement are unique features that distinguish optical photons from other quantum information carriers.
Here we demonstrate the chip-scale solution to the generation and manipulation of high-dimensional hyper-entanglement.
Our work provides the critical step for the efficient and parallel processing of quantum information with integrated photonics.
arXiv Detail & Related papers (2021-11-24T20:32:16Z) - A new concept for design of photonic integrated circuits with the
ultimate density and low loss [62.997667081978825]
We propose a new concept for design of PICs with the ultimate downscaling capability, the absence of geometric loss and a high-fidelity throughput.
This is achieved by a periodic continuous-time quantum walk of photons through waveguide arrays.
We demonstrate the potential of the new concept by reconsidering the design of basic building blocks of the information and sensing systems.
arXiv Detail & Related papers (2021-08-02T14:23:18Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.