論文の概要: Optimal Solving of Constrained Path-Planning Problems with Graph
Convolutional Networks and Optimized Tree Search
- arxiv url: http://arxiv.org/abs/2108.01036v1
- Date: Mon, 2 Aug 2021 16:53:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-03 15:30:19.460562
- Title: Optimal Solving of Constrained Path-Planning Problems with Graph
Convolutional Networks and Optimized Tree Search
- Title(参考訳): グラフ畳み込みネットワークと最適化木探索による制約付き経路計画問題の最適解法
- Authors: Kevin Osanlou, Andrei Bursuc, Christophe Guettier, Tristan Cazenave
and Eric Jacopin
- Abstract要約: 本稿では,機械学習モデルと最適解法を併用したハイブリッド問題解決プランナを提案する。
我々は現実的なシナリオで実験を行い、GCNのサポートにより、より難しい問題に対して、大幅なスピードアップとスムーズなスケーリングが可能になることを示す。
- 参考スコア(独自算出の注目度): 12.457788665461312
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning-based methods are growing prominence for planning purposes. However,
there are very few approaches for learning-assisted constrained path-planning
on graphs, while there are multiple downstream practical applications. This is
the case for constrained path-planning for Autonomous Unmanned Ground Vehicles
(AUGV), typically deployed in disaster relief or search and rescue
applications. In off-road environments, the AUGV must dynamically optimize a
source-destination path under various operational constraints, out of which
several are difficult to predict in advance and need to be addressed on-line.
We propose a hybrid solving planner that combines machine learning models and
an optimal solver. More specifically, a graph convolutional network (GCN) is
used to assist a branch and bound (B&B) algorithm in handling the constraints.
We conduct experiments on realistic scenarios and show that GCN support enables
substantial speedup and smoother scaling to harder problems.
- Abstract(参考訳): 学習ベースの手法は計画目的のために人気を増している。
しかし、グラフ上の制約付きパスプランニングを学習するアプローチはほとんどないが、下流の実践的な応用はいくつかある。
これは、通常災害救助や捜索救助用途に配備される自律無人地上車両(AUGV)の制約された経路計画のケースである。
オフロード環境では、AUGVは様々な運用上の制約の下でソース決定経路を動的に最適化する必要がある。
本稿では,機械学習モデルと最適解法を組み合わせたハイブリッド解法プランナーを提案する。
より具体的には、グラフ畳み込みネットワーク(GCN)は、制約を扱うために分岐とバウンド(B&B)アルゴリズムを支援するために使用される。
我々は現実的なシナリオで実験を行い、GCNサポートがより難しい問題に対して、大幅な高速化とスムーズなスケーリングを可能にしていることを示す。
関連論文リスト
- Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
我々は、ニューラルネットワークに厳しい制約を課すための一連のアプローチを開発する。
制約は、ニューラルネットワークとそのデリバティブに適用される線形作用素として指定することができる。
私たちのアプローチは、広範囲の現実世界のアプリケーションで実証されています。
論文 参考訳(メタデータ) (2023-06-15T08:33:52Z) - Cooperative Behavioral Planning for Automated Driving using Graph Neural
Networks [0.5801044612920815]
本研究は,複数の車両を共同で計画することで,都市交差点における交通流の最適化に機械学習アルゴリズムを活用することを提案する。
学習に基づく行動計画にはいくつかの課題が伴い、適切な入力と出力の表現と大量の基幹データを要求する。
自動運転における意思決定のためのオープンソースのシミュレーション環境において,提案手法を訓練し,評価する。
論文 参考訳(メタデータ) (2022-02-23T09:36:15Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Neural Motion Planning for Autonomous Parking [6.1805402105389895]
本稿では,より深い生成ネットワークと従来の動き計画手法を組み合わせたハイブリッドな動き計画手法を提案する。
提案手法は与えられた状態の表現を効果的に学習し,アルゴリズムの性能向上を示す。
論文 参考訳(メタデータ) (2021-11-12T14:29:38Z) - Learning-based Preference Prediction for Constrained Multi-Criteria
Path-Planning [12.457788665461312]
自動地上車両(AGV)の制約された経路計画法はそのような適用例である。
我々は、ニューラルネットワークモデルをトレーニングして、オフラインシミュレーションによって得られた知識を活用し、不確実な基準を予測する。
私たちはこのモデルをパスプランナに統合し、オンラインの問題を解決することができます。
論文 参考訳(メタデータ) (2021-08-02T17:13:45Z) - Integrated Decision and Control: Towards Interpretable and Efficient
Driving Intelligence [13.589285628074542]
自動走行車のための解釈可能かつ効率的な意思決定・制御フレームワークを提案する。
駆動タスクを階層的に構造化されたマルチパス計画と最適追跡に分解する。
その結果,オンライン計算の効率性や交通効率,安全性などの運転性能が向上した。
論文 参考訳(メタデータ) (2021-03-18T14:43:31Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
本稿では,学習ニューラルの強みと動的プログラミングアルゴリズムの強みを組み合わせた深層ポリシー動的プログラミング(d pdp)を提案する。
D PDPは、例の解からエッジを予測するために訓練されたディープニューラルネットワークから派生したポリシーを使用して、DP状態空間を優先し、制限する。
本研究では,旅行セールスマン問題 (TSP) と車両ルーティング問題 (VRP) の枠組みを評価し,ニューラルネットワークが(制限された)DPアルゴリズムの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-02-23T15:33:57Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
不確実かつ動的条件下で安全な軌道を計画することは、自律運転問題を著しく複雑にする。
RRT(Rapidly Exploring Random Trees)のような現在のサンプリングベース手法は、高い計算コストのため、この問題には理想的ではない。
軌道計画のための階層型強化学習構造とPID(Proportional-Integral-Derivative)コントローラを提案する。
論文 参考訳(メタデータ) (2020-11-09T20:49:54Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
ドローン基地局(DBS)は、要求が動的で予測不可能な地上ユーザーへのアップリンク接続を提供するために派遣される。
この場合、DBSの軌道は動的ユーザアクセス要求を満たすように適応的に調整されなければならない。
新たな環境に遭遇したDBSの軌道に適応するために,メタラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-25T20:43:59Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。