論文の概要: Cooperative Behavioral Planning for Automated Driving using Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2202.11376v1
- Date: Wed, 23 Feb 2022 09:36:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-24 16:28:49.336354
- Title: Cooperative Behavioral Planning for Automated Driving using Graph Neural
Networks
- Title(参考訳): グラフニューラルネットワークを用いた自動走行の協調行動計画
- Authors: Marvin Klimke, Benjamin V\"olz, Michael Buchholz
- Abstract要約: 本研究は,複数の車両を共同で計画することで,都市交差点における交通流の最適化に機械学習アルゴリズムを活用することを提案する。
学習に基づく行動計画にはいくつかの課題が伴い、適切な入力と出力の表現と大量の基幹データを要求する。
自動運転における意思決定のためのオープンソースのシミュレーション環境において,提案手法を訓練し,評価する。
- 参考スコア(独自算出の注目度): 0.5801044612920815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban intersections are prone to delays and inefficiencies due to static
precedence rules and occlusions limiting the view on prioritized traffic.
Existing approaches to improve traffic flow, widely known as automatic
intersection management systems, are mostly based on non-learning reservation
schemes or optimization algorithms. Machine learning-based techniques show
promising results in planning for a single ego vehicle. This work proposes to
leverage machine learning algorithms to optimize traffic flow at urban
intersections by jointly planning for multiple vehicles. Learning-based
behavior planning poses several challenges, demanding for a suited input and
output representation as well as large amounts of ground-truth data. We address
the former issue by using a flexible graph-based input representation
accompanied by a graph neural network. This allows to efficiently encode the
scene and inherently provide individual outputs for all involved vehicles. To
learn a sensible policy, without relying on the imitation of expert
demonstrations, the cooperative planning task is phrased as a reinforcement
learning problem. We train and evaluate the proposed method in an open-source
simulation environment for decision making in automated driving. Compared to a
first-in-first-out scheme and traffic governed by static priority rules, the
learned planner shows a significant gain in flow rate, while reducing the
number of induced stops. In addition to synthetic simulations, the approach is
also evaluated based on real-world traffic data taken from the publicly
available inD dataset.
- Abstract(参考訳): 都市交差点は、静的優先規則と優先トラフィックのビューを制限する閉塞のため、遅延や非効率の傾向にある。
自動交差点管理システムとして広く知られている既存の交通流改善手法は、主に非学習予約方式や最適化アルゴリズムに基づいている。
機械学習ベースの技術は、単一のエゴ車両の計画において有望な結果を示す。
本研究では,都市交差点における交通流の最適化に機械学習アルゴリズムを活用することを提案する。
学習に基づく行動計画にはいくつかの課題があり、適切な入力と出力の表現と大量の地上データを要求する。
本稿では,グラフニューラルネットワークを伴うフレキシブルグラフベース入力表現を用いて,前者問題に対処する。
これにより、シーンを効率的にエンコードし、関連するすべての車両に固有の出力を提供することができる。
専門家によるデモンストレーションの模倣に頼ることなく、合理的な政策を学ぶために、協調計画課題を強化学習問題と表現する。
自動運転における意思決定のためのオープンソースのシミュレーション環境において,提案手法を訓練し,評価する。
ファーストインファーストのスキームや静的優先ルールによって制御されるトラフィックと比較して、学習したプランナーは、誘導停止の数を減少させながら、流量の大幅な増加を示す。
合成シミュレーションに加えて、このアプローチは、公開されているindデータセットから取られた現実世界のトラフィックデータに基づいて評価される。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
接続された自動運転車は、エネルギー消費を最小化する可能性がある。
既存の決定論的手法は、一般に高い計算とメモリ要求に悩まされる。
本研究ではニューラルネットワークを介して実装された階層型マルチ水平最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-16T23:13:51Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
インテリジェントなトラフィック管理と制御における意思決定には,リアルタイムなトラフィック予測が不可欠だ。
本稿では,トラフィック生成のメカニズムを事前に学習するTraffNetという単純なディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T13:12:17Z) - Automatic Intersection Management in Mixed Traffic Using Reinforcement
Learning and Graph Neural Networks [0.5801044612920815]
接続された自動運転は、都市交通効率を大幅に改善する可能性がある。
協調行動計画(cooperative behavior planning)は、複数の車両の動作を協調的に最適化するために用いられる。
本研究は,協調型マルチエージェント計画における強化学習とグラフに基づくシーン表現を活用することを提案する。
論文 参考訳(メタデータ) (2023-01-30T08:21:18Z) - An Enhanced Graph Representation for Machine Learning Based Automatic
Intersection Management [0.5161531917413708]
我々は、前述したグラフベースのシーン表現とグラフニューラルネットワークに基づいて、強化学習を用いてこの問題にアプローチする。
本稿では,自動交差点管理において一般的に使用されるベースラインに対して,提案手法の詳細な評価を行う。
論文 参考訳(メタデータ) (2022-07-18T14:53:50Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars [10.080958939027363]
自動運転では、信号のない交差点を通るナビゲーションは難しい作業だ。
ナビゲーションポリシー学習のための新しい分岐ネットワークG-CILを提案する。
エンドツーエンドのトレーニング可能なニューラルネットワークは、より高い成功率と短いナビゲーション時間でベースラインを上回っています。
論文 参考訳(メタデータ) (2021-02-01T07:33:12Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。