論文の概要: AGAR a microbial colony dataset for deep learning detection
- arxiv url: http://arxiv.org/abs/2108.01234v1
- Date: Tue, 3 Aug 2021 01:26:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 14:06:10.354429
- Title: AGAR a microbial colony dataset for deep learning detection
- Title(参考訳): 深層学習検出のための微生物コロニーデータセットAGAR
- Authors: Sylwia Majchrowska, Jaros{\l}aw Paw{\l}owski, Grzegorz Gu{\l}a, Tomasz
Bonus, Agata Hanas, Adam Loch, Agnieszka Pawlak, Justyna Roszkowiak, Tomasz
Golan, and Zuzanna Drulis-Kawa
- Abstract要約: Annotated Germs for Automated Recognition データセットは、寒天のプレート上に培養された微生物コロニーの画像データベースである。
本研究では,データセット自体とその開発過程について述べる。
第2部では、AGARデータセット上で、オブジェクト検出のための選択されたディープニューラルネットワークアーキテクチャの性能を評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Annotated Germs for Automated Recognition (AGAR) dataset is an image
database of microbial colonies cultured on agar plates. It contains 18000
photos of five different microorganisms as single or mixed cultures, taken
under diverse lighting conditions with two different cameras. All the images
are classified into "countable", "uncountable", and "empty", with the
"countable" class labeled by microbiologists with colony location and species
identification (336442 colonies in total). This study describes the dataset
itself and the process of its development. In the second part, the performance
of selected deep neural network architectures for object detection, namely
Faster R-CNN and Cascade R-CNN, was evaluated on the AGAR dataset. The results
confirmed the great potential of deep learning methods to automate the process
of microbe localization and classification based on Petri dish photos.
Moreover, AGAR is the first publicly available dataset of this kind and size
and will facilitate the future development of machine learning models. The data
used in these studies can be found at https://agar.neurosys.com/.
- Abstract(参考訳): Annotated Germs for Automated Recognition (AGAR)データセットは、寒天板上に培養された微生物コロニーの画像データベースである。
5つの異なる微生物の18万枚の写真を単一または混合培養し、2つの異なるカメラで様々な照明条件下で撮影する。
全ての画像は「可算」、「非可算」、そして「空」に分類され、コロニーの位置と種同定(合計336442コロニー)を持つ微生物学者によって「可算」クラスに分類される。
本研究では,データセット自体とその開発過程について述べる。
第2部では,オブジェクト検出のためのディープニューラルネットワークアーキテクチャ,すなわち高速r-cnnとカスケードr-cnnの性能をagarデータセットで評価した。
その結果,ペトリ皿写真に基づく微生物の局在と分類のプロセスを自動化する深層学習の可能性が確認された。
さらに、AGARはこの種のデータセットとサイズの最初の公開データセットであり、将来の機械学習モデルの開発を促進する。
これらの研究で使用されるデータはhttps://agar.neurosys.com/で見ることができる。
関連論文リスト
- IDCIA: Immunocytochemistry Dataset for Cellular Image Analysis [0.5057850174013127]
そこで我々は,細胞画像解析のための機械学習手法の有効性を向上させるために,新しい注釈付き微視的セル画像データセットを提案する。
我々のデータセットには、細胞の顕微鏡像と、各画像、細胞数、細胞の位置が含まれています。
論文 参考訳(メタデータ) (2024-11-13T19:33:08Z) - DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
DiffKillRは、アーチェタイプマッチングと画像登録タスクの組み合わせとして、セルアノテーションを再構成する新しいフレームワークである。
我々はDiffKillRの理論的性質について論じ、それを3つの顕微鏡タスクで検証し、既存の教師付き・半教師なし・教師なしの手法に対する利点を実証する。
論文 参考訳(メタデータ) (2024-10-04T00:38:29Z) - Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology [2.7280901660033643]
本研究は、弱教師付き分類器と自己教師付きマスク付きオートエンコーダ(MAE)のスケーリング特性について検討する。
以上の結果から,ViTをベースとしたMAEは,様々なタスクにおいて弱い教師付き分類器よりも優れており,公的なデータベースから得られた既知の生物学的関係を思い出すと,11.5%の相対的な改善が達成されることがわかった。
我々は、異なる数のチャネルと順序の画像を推論時に入力できる新しいチャネルに依存しないMAEアーキテクチャ(CA-MAE)を開発した。
論文 参考訳(メタデータ) (2024-04-16T02:42:06Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Semi-Automatic Labeling and Semantic Segmentation of Gram-Stained
Microscopic Images from DIBaS Dataset [2.0225826789157404]
深層学習モデルは、細菌種のセグメンテーションと分類を達成するために訓練される。
ディープラーニングモデルは、バイオメディカル画像処理に多大な応用を見出す。
論文 参考訳(メタデータ) (2022-08-23T05:18:19Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Generation of microbial colonies dataset with deep learning style
transfer [0.0]
深層学習モデルの学習に使用できるペトリ料理の微生物学的画像の合成データセットを作成するための戦略を導入する。
本手法は, 5種類の微生物の局在, セグメンテーション, 分類が可能なニューラルネットワークモデルのトレーニングに使用できる, リアルな画像のデータセットを合成できることを示す。
論文 参考訳(メタデータ) (2021-11-06T03:11:01Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
本稿では,AGARデータセットを用いた3つの深層学習手法の性能について検討する。
得られた結果は将来の実験のベンチマークとして機能するかもしれない。
論文 参考訳(メタデータ) (2021-08-23T12:06:00Z) - A fully automated end-to-end process for fluorescence microscopy images
of yeast cells: From segmentation to detection and classification [0.0]
酵母細胞の蛍光顕微鏡画像の細胞区画を自動的にセグメント化し、検出し、分類するエンドツーエンドのプロセスを構築します。
この完全に自動化されたプロセスは、PerICo1プロジェクトの対話型e-Scienceサーバに統合される。
応用領域は酵母細胞における光学顕微鏡であるが、医療用途における多細胞画像にも適用できる。
論文 参考訳(メタデータ) (2021-04-06T21:24:50Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。