TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning
- URL: http://arxiv.org/abs/2408.15566v1
- Date: Wed, 28 Aug 2024 06:37:59 GMT
- Title: TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning
- Authors: Jinglun Li, Xinyu Zhou, Kaixun Jiang, Lingyi Hong, Pinxue Guo, Zhaoyu Chen, Weifeng Ge, Wenqiang Zhang,
- Abstract summary: We propose textbfTagOOD, a novel approach for OOD detection using vision-language representations.
TagOOD trains a lightweight network on the extracted object features to learn representative class centers.
These centers capture the central tendencies of IND object classes, minimizing the influence of irrelevant image features during OOD detection.
- Score: 26.446233594630087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal fusion, leveraging data like vision and language, is rapidly gaining traction. This enriched data representation improves performance across various tasks. Existing methods for out-of-distribution (OOD) detection, a critical area where AI models encounter unseen data in real-world scenarios, rely heavily on whole-image features. These image-level features can include irrelevant information that hinders the detection of OOD samples, ultimately limiting overall performance. In this paper, we propose \textbf{TagOOD}, a novel approach for OOD detection that leverages vision-language representations to achieve label-free object feature decoupling from whole images. This decomposition enables a more focused analysis of object semantics, enhancing OOD detection performance. Subsequently, TagOOD trains a lightweight network on the extracted object features to learn representative class centers. These centers capture the central tendencies of IND object classes, minimizing the influence of irrelevant image features during OOD detection. Finally, our approach efficiently detects OOD samples by calculating distance-based metrics as OOD scores between learned centers and test samples. We conduct extensive experiments to evaluate TagOOD on several benchmark datasets and demonstrate its superior performance compared to existing OOD detection methods. This work presents a novel perspective for further exploration of multimodal information utilization in OOD detection, with potential applications across various tasks.
Related papers
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
Out-of-distribution (OOD) samples are crucial when deploying machine learning models in open-world scenarios.
We propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to potential Outlier Exposure, termed EOE.
EOE can be generalized to different tasks, including far, near, and fine-language OOD detection.
EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset.
arXiv Detail & Related papers (2024-06-02T17:09:48Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
We introduce perturbations of the class projections in the final fully connected layer which creates a richer representation of the input.
We achieve state-of-the-art OOD detection results across multiple benchmarks of the OpenOOD framework.
arXiv Detail & Related papers (2024-05-27T13:38:28Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distribution (OOD) detection aims at identifying samples from unknown classes.
We propose a novel post hoc OOD detection method, called NegLabel, which takes a vast number of negative labels from extensive corpus databases.
arXiv Detail & Related papers (2024-03-29T09:19:52Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class.
In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs.
arXiv Detail & Related papers (2023-10-12T04:14:28Z) - Class Relevance Learning For Out-of-distribution Detection [16.029229052068]
This paper presents an innovative class relevance learning method tailored for OOD detection.
Our method establishes a comprehensive class relevance learning framework, strategically harnessing interclass relationships within the OOD pipeline.
arXiv Detail & Related papers (2023-09-21T08:38:21Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD
Detection Using Text-image Models [23.302018871162186]
We propose a novel one-class open-set OOD detector that leverages text-image pre-trained models in a zero-shot fashion.
Our approach is designed to detect anything not in-domain and offers the flexibility to detect a wide variety of OOD.
Our method shows superior performance over previous methods on all benchmarks.
arXiv Detail & Related papers (2023-05-26T18:58:56Z) - YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection [25.68925703896601]
YolOOD is a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task.
We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
arXiv Detail & Related papers (2022-12-05T07:52:08Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.